

Department of Computer Engineering

Towards Causal Replay for Knowledge Rehearsal in Continual Learning

Nikhil Churamani*, Jiaee Cheong*, Sinan Kalkan and Hatice Gunes

Motivation

Rehearsal Input layer New data Replay buffer OOOOOO ... OOOOOO ...

De Lange, M, et al. A Continual Learning Survey: Defying Forgetting in Classification Tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7):3366–3385, 2022.

Rehearsal:

- Maintaining a 'large enough' memory buffer inefficient.
- All samples may not be representative for the task. Possible redundancy.

Rehearsal:

- Maintaining a 'large enough' memory buffer inefficient.
- All samples may not be representative for the task. Possible redundancy.
- Noisy samples may negatively impact model learning.
- Need for *prioritising* samples to be replayed.

Zhang, Z, et al. "Learning social relation traits from face images." Proceedings of the IEEE International Conference on Computer Vision. 2015.

Pseudo-Rehearsal:

- Generative models harder to train for highdimensional data, e.g. images.
- Difficult to extract task-discriminative features for a large number of tasks.

Pseudo-Rehearsal:

- Generative models harder to train for highdimensional data, e.g. images.
- Difficult to extract task-discriminative features for a large number of tasks.
- Spurious features may be learnt, negatively impacting pseudo-rehearsal.
- Prioritising features that contribute most to the task.

Causality

Structural Causal Model (SCM)

M: (U,V,F) such that:

- 1. *U* is a set of latent background or exogeneous variables which affect the model but yet are not represented within the model.
- 2. $V = \{V_1, ..., V_n\}$ is the set of observable or endogeneous variables within the model.
- 3. F is the set of functions $\{f_1, ..., f_n\}$, one for each $V_i \in V$, such that $V_i = f_i(pa_i, U_{pa_i})$, $pa_i \subseteq V \setminus \{V_i\}$, $U_{pa_i} \subseteq U$.

Graphical Model G

Tools in Causal Research:

- Graphical models
- Do-operator do(x)
- Counterfactuals
- Structural Equations

$\begin{array}{c} Z \\ / \\ X \longrightarrow Y \end{array}$

We focus on:

- Causal Interventions
- Causal Structure Discovery

Causal-Replay for Knowledge Rehearsal

Causal Rehearsal

Causal Pseudo-Rehearsal

Causal Rehearsal

- Goal: Rank/Prioritise replay buffer samples for efficient rehearsal.
- Leverage on: Causal-Scoring: Samples with strong causal relationships are prioritised.

Causal Rehearsal

Prioritising Replay Buffers

Step 1: Rank buffer samples for a given task using causal scoring/discovery tools such as *Rank and Select*.

Step 2: Implement a threshold for the Causal Ranking and prune replay buffer to only include 'high-ranking' samples. Use the pruned replay buffer for training the model.

Step 3: Update the *Rank and Select* model based on the pruned replay buffer.

Causal Pseudo-Rehearsal

- Goal: Rehearse data in a principled manner
- Leverage on: interventions (both hard and soft)

Causal Pseudo-Rehearsal

Sample Generation from Intervened Distribution

Step 1: Train a generative model.

Step 2: Causally update the generative model's original distribution P(y|x) by inducing an intervention P(y|do(x)).

Step 3: Generate samples from the updated distribution which has been 'intervened' upon.

Summary and Next Steps

Summary

- Benefiting from Causality-driven knowledge rehearsal.
- Causal Replay by prioritising and pruning replay buffer samples.
- Causal Pseudo-rehearsal by extracting *strongest* task-discriminative features.
- Continually updating causal models as new data is acquired.

Next Steps

- Cross-dataset evaluations across popular computer vision benchmarks.
- Application towards Continual Facial Expression Recognition (FER).
- Subject-specific learning and personalisation for fairer FER.
- Deep-dive into causal discovery and inference for improved Causal Replay.

Acknowledgement

Nikhil Churamani

Jiaee Cheong

Sinan Kalkan

Hatice Gunes

- N. Churamani and H. Gunes are supported by the EPSRC/UKRI Project ARoEQ under grant ref. EP/R030782/1.
- J. Cheong is supported by the Alan Turing Institute doctoral studentship and the Cambridge Commonwealth Trust.

Department of Computer Engineering

Engineering and

Physical Sciences

Research Council

Towards Causal Replay for Knowledge Rehearsal in Continual Learning

Nikhil Churamani*, Jiaee Cheong*, Sinan Kalkan and Hatice Gunes

