Continual Learning with Real-World Impact:
Beyond Catastrophic Forgetting

Christopher Kanan
Associate Professor, University of Rochester

5% UNIVERSITY of
&5 ROCHESTER



Why Do | Work on Continual Learning?

* Humans and animals do not Training Test

have fixed train and test sets.
 We learn over the course of a
lifetime.
— We are continual learners.
* An AGI would need to learn S
more like us:
— Incrementally
— Efficiently
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Continual Learning has Focused on Mitigating
Catastrophic Forgetting

* |n deep learning, we normally shuffle our _
training data to simulate making it independent : "~
and identically distributed (iid), which is the
assumption that backpropagation makes.
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* Butin the real world, we often have temporally
correlated inputs and outputs.
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* |f we violate the iid assumption, we get

catastrophic forgetting.

— Itis especially severe for class-incremental
learning.



Outline

1. What'’s continual learning good for?

2. What capabilities does a continual learning system need?

3. How might causal learning advance continual learning?



What’s Continual Learning Good For?
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Al Can Do Great Things—if It Doesn't Burn
the Planet

The computing power required for Al landmarks, such as recognizing images and
defeating humans at Go, increased 300,000-fold from 2012 to 2018.
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Efficiently Updating
Very Large Production
Al Systems

One algorithm that lets a robot manipulate a Rubik's Cube used as much energy as 3 nuclear plants produce in an hour. PHOTOGRAPH: GETTY IMAGES



Efficiently Updating Very Large Production Al Systems
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In production Al, giant neural
network systems are often
periodically retrained from scratch.

Continual learning could enable
these systems to be continually
updated with new data, rather than
just updated periodic jobs 1-2 times
per month.



Continual Learning and Production Al

* (Can just re-train from scratch as a job or can easily
employ cumulative replay for continual learning.

 Cumulative replay:

— Get new examples, add them to the database.

— Progressively fine-tune the network! Many ways work well.

* Simplest approach is to mix new samples with some randomly

selected examples from the database and do some iterations of
backprop.

* May have to deal with the warm-start problem with fine-tuning
to get out of local optima.

We showed that on average over 99% of the offline

learner’s performance can be achieved using cumulative
replay (Hayes et al., ICRA 2019)
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Continual Learning Can Help Production Al
But it (Probably) Isn’t Essential

* Big companies do not need continual learning
because they could just re-train from scratch

or use cumulative replay.

e But continual learning could lead to huge

savings in power and reduce costs!

— Could we update LLMs with recent information?

* Questions for Continual Learning:

— Are we focusing on efficient learning? This is
rarely measured. Minimize neural network

updates.

— We cannot assume the data is non-iid, just that

we have more data. Are our algorithms too

rigid?

Christopher Kanan

Meta’s new Al Research SuperCluster has
760 NVIDIA DGX A100s (6080 GPUs).

Their existing Al cluster has 22,000 NVIDIA
V100 GPUs.



On-Device Continual Learning
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On-Device Continual Learning

Reminder: Fluffy has
a vet appointment
on Tuesday.

* Less compute means can learn on-device.

* No cloud computing in space or in Internet
deprived locations.

e Customized for each user without sending
personal information through the web.

* On-device learning for AR/VR, Smart toys,
robots, phones, and more.




TECHBY VICE

How This Internet of Things
Stuffed Animal Can Be Remotely
Turned Into a Spy Device

More bad news for toymaker Spiral Toys, which left customer data from its "CloudPets"
brand exposed online.

u By Lorenzo Franceschi-Bicchierai

February 28, 2017, 12:19pm n Share W Tweet ‘ Snap

PAUL STONE/YOUTUBE
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TECHBY VICE

Internet of Things Teddy
Bear Leaked 2 Million
Parent and Kids Message
Recordings

A company that sells “smart” teddy bears leaked 800,000 user account
credentials—and then hackers locked it and held it for ransom.
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What Properties Do We Need for On-Device Continual Learning?

* Being able to update neural networks targeted
for embedded devices.

— Would a huge vision transformer be appropriate?

* Updating neural networks without much
memory or storage.

— Many existing continual learning systems require far
more memory for replay than would be permissible.

e Effective generalization from only a few samples
(low-shot learning).

— Are we measuring this?
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ONLINE CONTINUAL LEARNING FOR EMBEDDED DEVICES

Tyler L. Hayes!, Christopher Kanan!-2 Published in CoLLAs (2022)
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 Compared continual learning
methods suitable for on-device
learning across multiple data
orderings: iid, class incremental, etc.

e SLDA (Hayes & Kanan, 2020) worked
best, but low-shot learning has a long
way to go.

e Demonstrated that mobile networks
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. Perceptron  Fine Naive SOvR NCM Replay Replay SLDA
outperform popular architectures Tune  Bayes (2pc)  (20p0)
used in continual learning research, Low-shot learning has a long way to go.

e.g., ResNet18 << MobileNetV3.
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Enabling Al Systems that
Require Continual Learning
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Interactive learning

* Al systems interacting with humans often
need to be updated:
— Correct the Al’s mistakes
— Update the Al with new information

[ Supervisor %

[ Defines outputs ] [ Make corrections ]
> l 4

* For production Al systems, these updates

do not need to be immediate, but for
embedded devices and personal
assistants, users would expect the model | Amodet |

to immediately correct itself.
— This requires continual learning.

16



Open World Continual Learning

b

Open-world Experience
Continuously discover new object categories.

Ability to label objects as known vs unknown.
Ability to discover new sub-categories of known object types.

Closely related area: Autonomous, Never-Ending Learning

17



How are new labels obtained?
- Active learning / human query

Learning in Multimodal Open-world - Automatic object discovery

What are the people doing?

| think they are hiking with
dogs and X.

Actually, X are Llamas?

Thinking ....

Show me the black Llamas.

Certificate in the form of
Quick learning allows to adapt bounding boxes

to new information

18



Most Continual Learning Work Has Limited
Relationship to These Applications

19



What Would an Ideal Continual Learner Look Like?

* A continual learning algorithm is capable of incrementally learning
from a data-stream without assuming the stream is sampled iid.

— Should work effectively regardless of how the data is sampled, whether it is
iid or extremely non-iid, e.g., class incremental learning.

* |deally a continual learner:
e Learns online without requiring large batches Frame #1  Frame#2  Frame#3  Frame #4

> G 5
* Is sample, computationally, and memory efficient. @é@ @@’ 5%% %\@ —
* No task-labels or auxiliary information. | N | | | | |
* Should scale to real-world datasets 0 O 0 O 0ol [0o
. . 1 L1 1 1
* Do most algorithms have these attributes? N I U I O I
— Are they rigorously evaluated? l N

Time

20



Incremental Learning of Permuted MNIST Batches

Task/Batch 3: 60K Instances

* Learn the original 60K MNIST images in a batch.

* Apply a random permutation matrix to the next batch of 60K to create the next task.
* Classifier typically has the “task” associated with each permutation at test time.

* \Very popular paradigm! Hundreds of papers in the last year!!!

Meets none of our goals:

* Highly unnatural. Nothing like animal learning. Not applicable to our applications.

e Algorithms tested only on these problems often do not scale.

* Systems that work well for this fail in other more useful paradigms (Kemker et al., AAAI 2018)
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Incremental Batch Learning with Task Labels
Without Permutations

Incremental batch learning with task labels at test time. Often studied with MINIST.

Task 1 Task 2 Task 3 Task 4 Task 5
first  second first second first second first second first second
class class class class class class class class class class

Problems:

Must know the task label during deployment. Often not available for real-world applications.
Often tasks are binary.

Little applicability to real-world applications.

Heavily studied using MNIST, CIFAR-100, TinylmageNet, etc..

Algorithms that work well on MNIST is not strong evidence that they will scale up to large
datasets with natural images.
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Batch A Batch B
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(a) Incremental Batch Learning

Incremental Batch Learning — Learn incrementally from batches of N examples,
where each batch is only seen once, without catastrophic forgetting.

For supervised learning, most use “continual learning” to mean this.

Common scenarios: Learn ImageNet in batches of N=100000 where each batch

has 100 classes not seen later. Unbounded resources during a batch.
Popular setup in computer vision with ImageNet-1K.
 Much closer real-world applications than MNIST.
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Most systems fail when using batches of 50 samples rather than 100K samples
during incremental learning of ImageNet.

Most systems cannot revisit. They only work in the incremental class learning
edge case!

Small batches or learning online is critical for many applications. "



ImageNet COReb50
MoODEL CLS IID [ID CLSs IID INST CLS INST
Fine-Tune (@)  0.288 0.961 0.334 0.851 0.334
ExStream 0.569 0.953 0.873 0.933 0.854
SLDA 0.752  0.976 0.958 0.963 0.959
iCaRL 0.306 - 0.690 - 0.644
Unified 0.614 - 0.510 - 0.527
BiC 0.440 - 0.410 - 0.415
REMIND 0.855 0.985 0.978 0.980 0.979
Offline (0r) 0.929 0.989 0.984 0.985 0.985
Offline 1.000 1.000 1.000 1.000 1.000

/ Class instance — See all \

instances of an object in a
temporal sequence, and
each class is seen in order.

\_

« REMIND works well despite the order of the data.

* Performance is virtually identical if iid, sorted by class, or
ordered by instances in a video stream.
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REMIND Compared to Methods that Use Task Labels

* We compared REMIND to regularization CLS 1ID CLS INST
methods that use task labels on CORe50. MODEL TL TL
« REMIND achieves the best results
regardless of whether task labels are SI 0.895 0.905
allowed. EWC 0.893 0.903
* By using task-labels, it means that these MAS 0.897 0.905
methods know which “task” the current RWALK 0.903 0.912
input belongs to. A-GEM  0.925 0.916
— Task 1: “The example is either class 1 or 2.” REMIND 0.995 0.995
— Task 2: “The example is either class 3 or 4”
— Etc. Offline 1.000 1.000
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Continual Learning & Goodhart’s Law

* Designed for the test, rather than designed
to solve the continual learning problem.

e Systems aren’t designed for real-world
applications.

* Most systems are only evaluated or only
function on edge cases: incremental class
learning.

* Most systems have constraints that make
them useless for these real-world
applications, e.g., very large batches, huge

Goodhart’s Law: When a replay buffers, ensembling many large

measure becomes a target it models, using enormous amounts of
memory.

ceases to be a good measure.
27



Continual Learning Needs More Rigor

Systems need to be targeted at one or more real-world
applications.

Systems need to be tested on large-scale datasets and shown to
scale regardless of “batch” size.

Systems should be capable of performing well regardless of data
ordering.

— A system only capable of class incremental learning without revisiting has
no real-world utility.

We need established gauntlets and suites of tests for evaluating
continual learning performance.

28



Catastrophic Forgetting is Largely Solved
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84.40

* 83.31
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Continually learn 900 classes from ImageNet. First 100 classes used for initialization.
Learns 900 classes in only 4 hours on one GPU. Focus is on efficient learning!

— Comparison continual learning methods take 1+ days to train on same hardware!
Works equally well regardless of data ordering. Same performance as offline system!
Low parameter count. Can target on-device applications.
Paper in preparation (results subject to improve). Probably on arXiv in late March.
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Problems Beyond Catastrophic Forgetting &
How Causal Machine Learning Can Help

31



Problems Beyond Catastrophic Forgetting

1. Efficient learning
— Minimizing neural network updates
— Learning the next task more efficiently than the first task

2. Out-of-domain generalization and distribution shifts
3. Learning to overcome dataset bias

* To tackle these problems we need algorithms that do
not make the iid assumption.

— Backprop alone is unlikely to suffice for solving these
problems.

32



We Won’t Be Able to Tackle These Problems with Band Aids

Catastrophic forgetting happens due to the data
being iid and learning with algorithms that make
this assumption.

Continual learning methods are largely band aids:

— How do we tweak learning so that the non-iid data
will work?

— Replay makes the data approximately iid.
Best case scenario: We match an offline learner

where the data is iid. It would work well given lots N

of data.

— System won’t forget, but we can’t tackle problems
beyond forgetting with band aids.
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Continual Learning & Transfer Learning

Continual learning can be thought of as transferring from the
past to the future, and vice versa.

Existing continual learning systems are essentially progressive
fine-tuners.

The mechanism of transfer is crude:
— Fine-tuning dense weights with various tricks to deal with non-iid.

Hypothesis: Causal representation learning of factored
representations could lead to significant benefits to increase
learning efficiency.
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Causal Representation Learning

* Causal representation learning: neural networks that map low-level
features to some high-level factorized variables (representations)
supporting causal statements relevant to downstream tasks.

* For continual learning, we can think of these causal representations
as being learning inductive biases over time that help with:
— Robustness to bias
— Efficient learning
— QOut-of-domain generalization

35



The Brain Has Functional Segregation and Modularity

Cerebral cortex Parietal lobe

Functional Areas of
the Cerebral Cortex

Visual Area:
Sight
Image recognition

Image perception

Association Area
Short-term memory
Equilibrium

Emotion

Motor Function Area
Initiation of voluntary muscles

Frontal lobe

Provincial hub

Connectaor
hub

Broca’s Area
Muscles of speech

Auditory Area
Hearing

Emotional Area Temporal lobe
Pain
Hung

Pituitary gland

Within-module
COnneCison

Cerebellum Respiratory centers Cerebellum

Brain stem ~

@ Sensory Association Area Lateral View Sagittal View

“F|ghl or flight” response Brain stem

|§| Sporns O, Berzel RF, 2016,

Annu. Rev. Psychol. 67:613-40

Olfactory Area
Smelling
Frontal lobe
Sensory Area
Sensation from muscles and skin

e The brain has
hierarchical modules.

e Regions functionally
close share information
with the same module.

S ry A iation Area
Evaluation of weight, texture,
temperature, etc. for object recognition
Wernicke's Area Parietal lobe
Written and spoken language comprehension

Motor Function Area
Eye movement and orientation

Higher Mental Functions
Concentration
Planning
Judgment
Emotional expression
Creativity Temporal lobe
Inhibition
Functional Areas of
the Cerebellum
Motor Functions Occipital lobe Cerebellum
Coordination of movement
Balance and equilibrium Superior View Inferior View
Posture

Brain stem

36
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Learning Refined Abstractions Over Time

* How do we measure concept acquisition over time?

* How do we measure the ability to dynamically recombine
learned concepts?

* We can at least measure whether learning is becoming more
efficient over time.

37



Continual Learning Needs Better Evaluation Paradigms to
Showcase the Benefits of Causal Learning

* Existing evaluation paradigms themselves need a massive
upgrade to measure the things that matter in continual
learning.

— Incremental learning on ImageNet and other datasets won’t suffice.

 We need to design experimental setups where the benefits of
causal learning could be evaluated.
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Thank You!

Continual learning has many valuable real-world applications.
— We should design algorithms for real-world applications
— Their performance characteristics measured more rigorously.

Toy problems are an okay place to start, but continual learning needs to grow up.

There are much more interesting questions in continual learning than mitigating
catastrophic forgetting.

— Causal machine learning is an exciting area to mine for ideas to incorporate these abilities
into continual learners.

— We will need new evaluation setups and metrics to properly assess these capabilities.

http://chriskanan.com
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