

Modeling Uplift from Observational Time-Series in Continual Scenarios

Sanghyun Kim¹, Jungwon Choi¹, Namhee Kim², Jaesung Ryu³, Juho Lee¹

¹ Kim Jaechul Graduate School of AI, KAIST ² Department of Digital Analytics, Yonsei University ³ AFI Inc.

AAAI-23 Continual Causality Bridge

February 8th, 2023

Introduction

Modeling Uplift from Observational Time-Series in Continual Scenarios

- Modeling uplift: (simple) causal inference
- Observational time-series: a novel real-world dataset "Backend-TS"
- Continual scenarios: continual learning scenarios

Challenges in Causality

- Limited to synthetic dataset
- RCTs are expensive and often impossible.

- Unconfoundednesspositivity trade-off
- Causality in highdimensional spaces

- Generalizability to different (unseen) domains
- Train time != test time (temporal difference)

Uplift Modeling

• Models the uplift (or ITE, Individual Treatment Effect) of each user as follows:

$$u_i = E[Y_i(1) - Y_i(0)]$$

- Due to the fundamental problem of causal inference, we instead model CATE (Conditional Average Treatment Effect) as follows: u(X) = E[Y(1) - Y(0)|X]
- Ultimately targets a subgroup of users with high uplifts from the treatment (e.g., push message, advertisement, drug)

A Naïve Implementation

Dataset Construction

- CRUD log
 - CRUD: Create, Read, Update, and Delete
 - Transaction logs are stored in data warehouses.
 - The company provides common APIs but does not have access to internal data.
- Pseudo-control group
 - The control group does not exist in the raw data.
 - Sample a pseudo-control group when no push exists a week (168 hrs) before the push message for the treatment group.
- No push area
 - An -12~+6 hour window around which no other pushes must exist.
 - To prevent interference from other push messages.

Dataset Illustration

Dataset Overview

- 16.7 million lines from 5,360 users of three mobile games (A, B and C) currently in service
- A triple (X, t, y), where
 - X: datetime information (millisecond)
 - t: treatment/control group (push message)
 - y: user login within 3/6/12 hours from the push message
- URL: https://github.com/nannullna/ts4uplift

Proposed Tasks

	Different Time	Different Game	Fine- tuning
ID (in-domain)	×	×	×
TS (temporal shift)	\checkmark	×	×
OOD (out-of-domain) w/	\checkmark	\checkmark	\checkmark
OOD (out-of-domain) w/o	\checkmark	\checkmark	×

Task	Train set	Valid set	Test set
ID	Game A APR + MAY	Game A APR + MAY (20% split)	-
TS	Game A APR + MAY	Game A APR + MAY (20% split)	Game A JUN
OOD w/	Game A APR + MAY & Game B JUN	Game B JUN (20% split)	Game B JUL
OOD w/o	Game A APR + MAY	Game A APR + MAY (20% split)	Game C JUL

Baseline

• TCN

- 11 dilated 1D convolution blocks
- Receptive field (max length of inputs) of 2,048
- Additional embedding layer & sinusoidal functions to embed categoricals
- Dragonnet (Shi et al., 2019)
 - Regularization on the propensity score
- Siameses Network (SMITE) (Mouloud et al., 2020)
 - Z variable transformation (Athey, 2015)

10

Baseline Illustration

Embedding Layer

TCN Backbone

Dragonnet/Siamese Network

11

Evaluation

- Qini coefficient
 - : a normalized area (shaded) between the qini curve and the random targeting line (ATE).
- Alternatively, AUUC (area under uplift curve)
- The Qini Curve

$$Qini \ curve(\phi) = \frac{n_{t,y=1}(\phi)}{N_t} - \frac{n_{c,y=1}(\phi)}{N_c}$$

• In the right figure, Model 2 performs better than Model 1.

Proportion of customers targeted (ϕ)

Results

Model	Ckpt	ID	TS	ood w/	00D w/o
Dragon	VAL MAX	.091/.056	.006/.003 .112/.074	.118/.038 .372/.082	.037/.023 .123/.081
Siamese	VAL MAX	.145/.062	036/011 .249/.067	.154/.057 .207/.075	057/030 .036/.022
P (Y = 1)		11.9%	12.2%	5.9%	22.4%

• TS

- The performance gap between VAL and MAX was significant, and VAL actually performed worse than random targeting.
- This empirically shows the existence of the temporal distribution changes.

Results

Model	Ckpt	ID	TS	ood w/	00D w/o
Dragon	VAL MAX	.091/.056	.006/.003 .112/.074	.118/.038 .372/.082	.037/.023 .123/.081
Siamese	VAL MAX	.145/.062	036/011 .249/.067	.154/.057 .207/.075	057/030 .036/.022
P (Y = 1)		11.9%	12.2%	5.9%	22.4%

• 00D w/

- Fine-tuning with the additional data using the CL algorithm has somewhat reduced the performance gap.
- We conjecture that the model became more robust since it further learns common mechanisms.

Results

Model	Ckpt	ID	TS	ood w/	ood w/o
Dragon	VAL MAX	.091/.056	.006/.003 .112/.074	.118/.038 .372/.082	.037/.023 .123/.081
Siamese	VAL MAX	.145/.062	036/011 .249/.067	.154/.057 .207/.075	057/030 .036/.022
P (Y = 1)		11.9%	12.2%	5.9%	22.4%

• 00D w/o

- The performance dropped sharply without fine-tuning.
- We emphasize that the true causal model should perform equally well and generalize to different games even without training, although they may potentially have a very different user base.

Acknowledgement

We thank AFI Inc. and anonymous game companies for allowing data to be published for research purpose.

16