Putting the Causality into Continual Causality

Part II: Causal Knowledge Representation, Inference, and Learning

Adèle Helena Ribeiro

adele.ribeiro@uni-marburg.de

February 7th, 2023

Data Science in Biomedicine
Faculty of Mathematics and Computer Science
Philipps-Universität Marburg

Encoding Causal Knowledge

Causal Diagrams

Structural Causal Model (SCM)

$$\mathcal{M} = \langle \mathbf{V}, \mathbf{U}, \mathcal{F}, P(\mathbf{u}) \rangle$$

Induced Causal Diagram
(an Acyclic Directed Mixed Graphs, or ADMG)

$$\mathcal{M} = \begin{cases} \mathbf{V} = \{X, Y, Z\} \\ \mathbf{U} = \{U_X, U_Y, U_Z\} \end{cases}$$

$$\mathcal{M} = \begin{cases} X \leftarrow f_X(U_X, U_{XY}) \\ Z \leftarrow f_Z(X, U_Z) \\ Y \leftarrow f_Y(Z, U_Y, U_{XY}) \end{cases}$$

$$P(\mathbf{U})$$

An SCM $\mathcal{M} = \langle \mathbf{V}, \mathbf{U}, \mathcal{F}, P(\mathbf{u}) \rangle$ induces a causal diagram such that, for every $V_i, V_j \in \mathbf{V}$:

• $V_i \rightarrow V_j$, if V_i appears as argument of $f_j \in \mathcal{F}$.

Structural Causal Model (SCM)

$$\mathcal{M} = \langle \mathbf{V}, \mathbf{U}, \mathcal{F}, P(\mathbf{u}) \rangle$$

$$\mathcal{M} = \begin{cases} \mathbf{V} = \{X, Y, Z\} \\ \mathbf{U} = \{U_X, U_Y, U_Z\} \end{cases}$$

$$\mathcal{M} = \begin{cases} X \leftarrow f_X(U_X, U_{XY}) \\ Z \leftarrow f_Z(X, U_Z) \\ Y \leftarrow f_Y(Z, U_Y, U_{XY}) \end{cases}$$

$$P(\mathbf{U})$$

Induced Causal Diagram
(an Acyclic Directed Mixed Graphs, or ADMG)

An SCM $\mathcal{M} = \langle \mathbf{V}, \mathbf{U}, \mathcal{F}, P(\mathbf{u}) \rangle$ induces a causal diagram such that, for every $V_i, V_j \in \mathbf{V}$:

- $V_i \to V_j$, if V_i appears as argument of $f_i \in \mathcal{F}$.
- $V_i \longleftrightarrow V_j$ if the corresponding $U_i, U_i \in \mathbf{U}$ are correlated or f_i , f_j share some argument $U \in \mathbf{U}$.

Structural Causal Model (SCM)

$$\mathcal{M} = \langle \mathbf{V}, \mathbf{U}, \mathcal{F}, P(\mathbf{u}) \rangle$$

$$\mathcal{M} = \begin{cases} \mathbf{V} = \{X, Y, Z\} \\ \mathbf{U} = \{U_X, U_Y, U_Z\} \end{cases}$$

$$\mathcal{M} = \begin{cases} X \leftarrow f_X(U_X, U_{XY}) \\ Z \leftarrow f_Z(X, U_Z) \\ Y \leftarrow f_Y(Z, U_Y, U_{XY}) \end{cases}$$

$$P(\mathbf{U})$$

Induced Causal Diagram
(an Acyclic Directed Mixed Graphs, or ADMG)

An SCM $\mathcal{M} = \langle \mathbf{V}, \mathbf{U}, \mathcal{F}, P(\mathbf{u}) \rangle$ induces a causal diagram such that, for every $V_i, V_j \in \mathbf{V}$:

- $V_i \rightarrow V_j$, if V_i appears as argument of $f_j \in \mathcal{F}$.
- $V_i \longleftrightarrow V_j$ if the corresponding $U_i, U_i \in \mathbf{U}$ are correlated or f_i , f_j share some argument $U \in \mathbf{U}$.

Structural Causal Model (SCM)

$$\mathcal{M} = \langle \mathbf{V}, \mathbf{U}, \mathcal{F}, P(\mathbf{u}) \rangle$$

$$\mathcal{M} = \begin{cases} \mathbf{V} = \{X, Y, Z\} \\ \mathbf{U} = \{U_X, U_Y, U_Z\} \end{cases}$$

$$\mathcal{M} = \begin{cases} X \leftarrow f_X(U_X, U_{XY}) \\ Z \leftarrow f_Z(X, U_Z) \\ Y \leftarrow f_Y(Z, U_Y, U_{XY}) \end{cases}$$

$$P(\mathbf{U})$$

Induced Causal Diagram
(an Acyclic Directed Mixed Graphs, or ADMG)

An SCM $\mathcal{M} = \langle \mathbf{V}, \mathbf{U}, \mathcal{F}, P(\mathbf{u}) \rangle$ induces a causal diagram such that, for every $V_i, V_j \in \mathbf{V}$:

- $V_i \to V_j$, if V_i appears as argument of $f_i \in \mathcal{F}$.
- $V_i \longleftrightarrow V_j$ if the corresponding $U_i, U_i \in \mathbf{U}$ are correlated or f_i , f_j share some argument $U \in \mathbf{U}$.

Classical Causal Effect Identification

• Tian, J. and Pearl, J. A General Identification Condition for Causal Effects. In Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI 2002), pp. 567–573, Menlo Park, CA, 2002. AAAI Press/MIT Press.

Classical Causal Effect Identification

• Tian, J. and Pearl, J. (2002) A General Identification Condition for Causal Effects. In Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI), pp. 567–573, Menlo Park, CA. AAAI Press/MIT Press.

General Causal Effect Identification

• Lee, S., Correa, J., and Bareinboim, E. (2019). General identifiability with arbitrary surrogate experiments. In Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence, volume 35, Tel Aviv, Israel. AUAI Press. Link

Can we relax the causal assumptions?

Encoding Causal Knowledge in Partially Understood Domains

Cluster Causal Diagrams

Partially Understood Systems

- (A) Age
- (B) Blood pressure
- (C) Comorbidities
- (D) Medication history
- (X) Lisinopril
- (S) Sleep Quality
- (Y) Stroke

A causal diagram cannot be specified given the existing knowledge!

How can we identify P(y | do(x)) in this case?

Cluster Causal Diagrams (C-DAGs)

- (A) Age
- (B) Blood pressure
- (C) Comorbidities
- (D) Medication history
- (X) Lisinopril
- (S) Sleep Quality
- (Y) Stroke

 $\{\{X\},\{S\},\{Y\},\{A,B,C,D\}\}$

A cluster causal diagram $G_{\mathbb{C}}$ over a given partition $\mathbb{C} = \{\mathbb{C}_1, ..., \mathbb{C}_k\}$ of \mathbb{V} is compatible with a causal diagram G over \mathbb{V} if for every $\mathbb{C}_i, \mathbb{C}_i \in \mathbb{C}$:

- $\mathbf{C}_i \to \mathbf{C}_j$ if $\exists V_i \in \mathbf{C}_i$ and $V_j \in \mathbf{C}_j$ such that $V_i \to V_j$
- $\mathbf{C}_i \longleftrightarrow \mathbf{C}_j$ if $\exists V_i \in \mathbf{C}_i$ and $V_j \in \mathbf{C}_j$ such that $V_i \longleftrightarrow V_j$ and $G_{\mathbf{C}}$ contains no cycles.

Partially Understood Systems

Many causal diagrams are compatible with the current knowledge!

Can be seen as an *equivalence class* of causal diagrams, where any relationships are allowed among the variables within each cluster.

Can we infer causal effects without deciding on any one particular causal diagram?

Identification of Causal Effects from C-DAGs

Anand, T. V.*, **Ribeiro**, **A. H.***, Tian, J., Bareinboim, E. (2022). Causal Effect Identification in Cluster DAGs. *Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)*

Causal Effect Identification

Graphical Criteria, Do-Calculus, and ID-Algorithm

Identification via Backdoor Adjustment

Let ${f X}$ be a set of treatment variables and ${f Y}$ a set of outcome variables in the causal graph G.

If there exists a set **Z** such that:

- 1. for every $X \in X$ and $Y \in Y$, Z blocks every path between X and Y that has an arrow into X, and
- 2. no node in \mathbb{Z} is a descendant of a variable $X \in \mathbb{X}$ (all variables in \mathbb{Z} are pre-treatment)

Then, ${f Z}$ satisfies the *backdoor criterion* and, then the effect of ${f X}$ on ${f Y}$ is given by:

$$P(\mathbf{y} | do(\mathbf{x})) = \sum_{\mathbf{z}} P(\mathbf{y} | \mathbf{x}, \mathbf{z}) P(\mathbf{z})$$

$$\mathbf{X} = \{X\}$$

$$\mathbf{Y} = \{Y\}$$

$$\mathbf{Z} = \{Z\}$$

Identification via Backdoor Adjustment

Let ${f X}$ be a set of treatment variables and ${f Y}$ a set of outcome variables in the causal graph G.

If there exists a set **Z** such that:

- 1. for every $X \in \mathbf{X}$ and $Y \in \mathbf{Y}$, \mathbf{Z} blocks every path between X and Y that has an arrow into X, and
- 2. no node in \mathbb{Z} is a descendant of a variable $X \in \mathbb{X}$ (all variables in \mathbb{Z} are pre-treatment)

Then, ${f Z}$ satisfies the *backdoor criterion* and, then the effect of ${f X}$ on ${f Y}$ is given by:

$$P(\mathbf{y} | do(\mathbf{x})) = \sum_{\mathbf{z}} P(\mathbf{y} | \mathbf{x}, \mathbf{z}) P(\mathbf{z})$$

$$\mathbf{X} = \{X\}$$

$$\mathbf{Y} = \{Y\}$$

$$\mathbf{Z} = \{Z\}$$

Identification via Front-Door Adjustment

Let X be a set of treatment variables and Y a set of outcome variables in the causal graph G. If there exists a set M such that:

- 1. M intercepts all directed paths from any vertex $X \in X$ to any vertex $Y \in Y$;
- 2. There is no unblocked back-door path from any vertex $X \in \mathbf{X}$ to vertex $M \in \mathbf{M}$; and
- 3. All back-door paths from any vertex $M \in \mathbf{M}$ to any vertex $Y \in \mathbf{Y}$ are blocked by \mathbf{X} .

Then, ${\bf M}$ satisfies the *front-door criterion* and, then the effect of ${\bf X}$ on ${\bf Y}$ is given by:

$$P(\mathbf{y} \mid do(\mathbf{x})) = \sum_{\mathbf{m}} P(\mathbf{m} \mid \mathbf{x}) \sum_{\mathbf{x}'} P(\mathbf{y} \mid \mathbf{m}, \mathbf{x}') P(\mathbf{x}')$$

$$\mathbf{X} = \{X\}$$
 $\mathbf{Y} = \{Y\}$
 $\mathbf{M} = \{M\}$

Do-Calculus (a.k.a. Causal Calculus)

Pearl, 1995

Graphical conditions implying invariances between observational (\mathcal{L}_1) and interventional (\mathcal{L}_2) distributions

Theorem: Let X, Y, Z, W be any disjoint subjects of variables.

Rule 1 (Insertion/Deletion of Observations):

$$P(\mathbf{y} \mid do(\mathbf{x}), \mathbf{z}, \mathbf{w}) = P(\mathbf{y} \mid do(\mathbf{x}), \mathbf{w}), \text{ if } (\mathbf{Y} \perp \mathbf{Z} \mid \mathbf{X}, \mathbf{W})_{G_{\overline{\mathbf{x}}}}$$

Rule 2 (Actions/Observations Exchange):

$$P(\mathbf{y} \mid do(\mathbf{x}), do(\mathbf{z}), \mathbf{w}) = P(\mathbf{y} \mid do(\mathbf{x}), \mathbf{z}, \mathbf{w}), \text{ if } (\mathbf{Y} \perp \mathbf{Z} \mid \mathbf{X}, \mathbf{W})_{G_{\overline{\mathbf{X}}\underline{\mathbf{z}}}}$$

Rule 3 (Insertion/Deletion of Actions):

$$P(\mathbf{y} | do(\mathbf{x}), do(\mathbf{z}), \mathbf{w}) = P(\mathbf{y} | do(\mathbf{x}), \mathbf{w}), \text{ if } (\mathbf{Y} \perp \mathbf{Z} | \mathbf{X}, \mathbf{W})_{G_{\overline{\mathbf{X}}, \overline{\mathbf{Z}}(\overline{\mathbf{W}})}}$$

 $G_{\overline{\mathbf{X}}\overline{\mathbf{Z}}}$: graph G after removing the incoming arrows into \mathbf{X} and the outgoing arrows from \mathbf{Z} ;

 ${f Z}({f W})$: set of ${f Z}$ -nodes that are not ancestors of any ${f W}$ -node in $G_{\overline{f X}}$.

http://causalfusion.net

Lee, S., Correa, J., and Bareinboim, E. (**2019**). General identifiability with arbitrary surrogate experiments. In *Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence*, volume 35, Tel Aviv, Israel. AUAI Press. Link

http://causalfusion.net

Lee, S., Correa, J., and Bareinboim, E. (**2019**). General identifiability with arbitrary surrogate experiments. In *Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence*, volume 35, Tel Aviv, Israel. AUAI Press. Link

http://causalfusion.net

Lee, S., Correa, J., and Bareinboim, E. (**2019**). General identifiability with arbitrary surrogate experiments. In *Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence*, volume 35, Tel Aviv, Israel. AUAI Press. Link

Purely Data-Driven Causal Inference

Causal Discovery and Identification under Markov Equivalence

Learning Causal Structures from Data

What if no knowledge is available for constructing a C-DAG?

Can we learn a causal diagram ${\mathscr G}$ from observational data?

In non-parametric settings, we can't learn the true causal diagram, but we can learn a graphical representation of all *compatible* causal diagrams, called Markov equivalence class!

Markov Equivalence Class

$$\mathcal{M}_1 = \begin{cases} \mathbf{V} = \{X, Y\} \\ \mathbf{U} = \{U_x, U_Y\} \end{cases}$$
$$\mathcal{F} = \begin{cases} f_X(U_X) \\ f_Y(X, U_Y) \end{cases}$$
$$P(\mathbf{U})$$

•

$$\mathcal{M}_{N-1} = \begin{cases} \mathbf{V} = \{X, Y\} \\ \mathbf{U} = \{U_x, U_Y, U_{X,Y}\} \end{cases}$$

$$\mathcal{M}_{N-1} = \begin{cases} f_X(Y, U_X, U_{X,Y}) \\ f_Y(U_Y, U_{X,Y}) \end{cases}$$

$$P(\mathbf{U})$$

$$\mathcal{M}_{N} = \begin{cases} \mathbf{V} = \{X, Y\} \\ \mathbf{U} = \{U_{X}, U_{Y}\} \\ \\ \mathcal{F} = \begin{cases} f_{X}(U_{X}) \\ f_{Y}(U_{Y}) \\ \end{pmatrix} \end{cases}$$

$$P(\mathbf{U})$$

Conditional (in)dependencies

$$P(x, y) = \sum_{u_x, u_y} P(x \mid y) P(y) P(u_x, u_y)$$

$$P(x, y) = \sum_{u_x, u_y} P(y \mid x) P(x) P(u_x, u_y)$$

Markov Equivalence Class

(class of models implying the same set of conditional independencies)

Correlation does not imply causation!

Constraint-Based Causal Discovery

Goal: Learn a graphical representation of the Markov Equivalence Class from observational data.

Assumptions: the observed distribution is the marginal of a distribution P that satisfies the following conditions for the true causal diagram G (an **ADMG**):

1) I-Map / Semi-Markov Condition: for any disjoint subsets X, Y and Z: G is an I-Map of P $(X \perp \!\!\!\perp Y \mid Z)_G \Rightarrow (X \perp \!\!\!\perp Y \mid Z)_P$. P is semi-Markov

2) Faithfulness Condition: for any disjoint subsets X, Y and Z: $(X \perp \!\!\!\perp Y | Z)_P \Rightarrow (X \perp \!\!\!\perp Y | Z)_G.$

P is **faithful** to G

relative to G.

Note: Estimation of the marginal distribution from limited data requires and additional assumption:

3) An adequate conditional independence test is available.

Learning Structural Invariances

Markov Equivalence Class (MEC)

Learning Structural Invariances

 $P(x, y, z) = P(z \mid x, y) P(x \mid y) P(y)$

 $= P(z \mid x, y) P(x) P(y)$

Markov Equivalence Class (MEC)

Fast Causal Inference (FCI) Algorithm

True (unknown) causal diagram

Complete Graph

 $X \perp \!\!\!\perp Y \mid Z, W$

FCI Rules (R1) - (R10)

Partial Ancestral Graph (PAG)

Arrowhead \Longrightarrow non-ancestrality

Tail \Longrightarrow ancestrally

Circle **⇒** non-invariance

spurious association

selection bias

Z is not an ancestor of X or W.

Z and W are ancestors (and definite causes) of Y.

Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias. *Artificial Intelligence*, 172(16):1873–1896. Link

Causal Structure Learning

Given an adequate conditional independence test, structure learning algorithms (e.g. PC/IC, FCI, etc) learn a representation of the Markov equivalence class:

Underlying Causal Diagram

Partial Ancestral Graph

Identification of Causal Effects from PAGs

Jaber A., **Ribeiro A. H.,** Zhang, J., Bareinboim, E. Causal Identification under Markov Equivalence - Calculus, Algorithm, and Completeness. In Proceedings of the 36th Annual Conference on Neural Information Processing Systems, NeurIPS 2022. (Link)

Causal Challenges in Continual Causality

Continual Causal Discovery and Inference

Challenges: Causal Data Fusion / Transfer Learning

Continual Dynamic Causal Systems

Query: $s \ge 0$, $P(y_t | do(x_{t-s})) = ?$

Challenges: Temporal Dependence, Non-Stationarity

Thank You!

adele.ribeiro@uni-marburg.de

Questions?