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Encoding Causal Knowledge
Causal Diagrams



ℳ =

V = {X, Y, Z}
U = {UX, UY, UZ}

ℱ =
X ← fX(UX, UXY)
Z ← fZ(X, UZ)
Y ← fY(Z, UY, UXY)

P(U)

Causal Diagram: Encoder of Structural Knowledge
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Structural Causal Model (SCM) 
ℳ = ⟨V, U, ℱ, P(u)⟩

YX Z
T2 DiabetesBMI Insulin 

Resistance

An SCM  induces a causal diagram such that, for every :


• , if  appears as argument of .

ℳ = ⟨V, U, ℱ, P(u)⟩ Vi, Vj ∈ V
Vi → Vj Vi fj ∈ ℱ

Induced Causal Diagram

(an Acyclic Directed Mixed Graphs, or ADMG)



Causal Diagram: Encoder of Structural Knowledge
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Structural Causal Model (SCM) 
ℳ = ⟨V, U, ℱ, P(u)⟩

YX Z
T2 DiabetesBMI Insulin 

Resistance

•  if the corresponding  are correlated or  ,  share some argument .Vi ⤎⤏ Vj Ui, Uj ∈ U fi fj U ∈ U

ℳ =

V = {X, Y, Z}
U = {UX, UY, UZ}

ℱ =
X ← fX(UX, UXY)
Z ← fZ(X, UZ)
Y ← fY(Z, UY, UXY)

P(U)

Induced Causal Diagram

(an Acyclic Directed Mixed Graphs, or ADMG)

An SCM  induces a causal diagram such that, for every :


• , if  appears as argument of .

ℳ = ⟨V, U, ℱ, P(u)⟩ Vi, Vj ∈ V
Vi → Vj Vi fj ∈ ℱ



Causal Diagram: Encoder of Structural Knowledge
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Structural Causal Model (SCM) 
ℳ = ⟨V, U, ℱ, P(u)⟩

•  if the corresponding  are correlated or  ,  share some argument .Vi ⤎⤏ Vj Ui, Uj ∈ U fi fj U ∈ U

ℳ =

V = {X, Y, Z}
U = {UX, UY, UZ}

ℱ =
X ← fX(UX, UXY)
Z ← fZ(X, UZ)
Y ← fY(Z, UY, UXY)

P(U)

Induced Causal Diagram

(an Acyclic Directed Mixed Graphs, or ADMG)

An SCM  induces a causal diagram such that, for every :


• , if  appears as argument of .

ℳ = ⟨V, U, ℱ, P(u)⟩ Vi, Vj ∈ V
Vi → Vj Vi fj ∈ ℱ

YX Z
T2 DiabetesBMI Insulin 

Resistance

UXYUX UYUZ



Causal Diagram: Encoder of Structural Knowledge
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Structural Causal Model (SCM) 
ℳ = ⟨V, U, ℱ, P(u)⟩

YX Z
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ℳ =
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U = {UX, UY, UZ}
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X ← fX(UX, UXY)
Z ← fZ(X, UZ)
Y ← fY(Z, UY, UXY)

P(U)

Induced Causal Diagram

(an Acyclic Directed Mixed Graphs, or ADMG)

An SCM  induces a causal diagram such that, for every :


• , if  appears as argument of .

ℳ = ⟨V, U, ℱ, P(u)⟩ Vi, Vj ∈ V
Vi → Vj Vi fj ∈ ℱ



Classical Causal Effect Identification
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Inference 
Engine

3 Data
P(x, m, y)

1 Query
P(y |do(x))

Solution
yes / no

Available 
Distributions

Interventional 
Distribution

👍

P(y |do(x)) = ∑
m

P(m |x) ∑
x′ 

P(y |m, x′ )P(x′ )

2 Causal Contraints

YX M

• Tian, J. and Pearl, J. A General Identification Condition for Causal Effects. In Proceedings of the Eighteenth National 
Conference on Artificial Intelligence (AAAI 2002), pp. 567–573, Menlo Park, CA, 2002. AAAI Press/MIT Press.

Observational Distribution

Structural knowledge 
available



Classical Causal Effect Identification
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Inference 
Engine

3 Data
P(x, y, z, w)

1 Query
P(y |do(x))

Solution
yes / no2 Causal Contraints

YX

ZW

Available 
Distributions

Interventional 
Distribution 👍

• Tian, J. and Pearl, J. (2002) A General Identification Condition for Causal Effects. In Proceedings of the Eighteenth 
National Conference on Artificial Intelligence (AAAI), pp. 567–573, Menlo Park, CA. AAAI Press/MIT Press.

Observational Distribution



General Causal Effect Identification
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Inference 
Engine

3 Data
P(x, y, z, w)

1 Query
P(y |do(x))

Solution
yes / no

Available 
Distributions

Interventional 
Distribution

👍

P(y |do(x)) = ∑
z

P(y |x, z, do(w))(α1P(z) + α2P(z |do(w)))

2 Causal Contraints

YX

ZW

• Lee, S., Correa, J., and Bareinboim, E. (2019). General identifiability with arbitrary surrogate experiments. In 
Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence, volume 35, Tel Aviv, Israel. AUAI Press. Link

Observational Distribution

Experimental DistributionP(x, y, z |do(w))

https://proceedings.mlr.press/v115/lee20b.html


Can we relax the causal assumptions?

10

Inference 
Engine

3 Data
P(x, y, z |do(w))
P(x, y, z, w)

1 Query
P(y |do(x))

Solution
yes / no

Available 
Distributions

Interventional 
Distribution

👍

P(y |do(x)) = ∑
z

P(y |x, z, do(w))(α1P(z) + α2P(z |do(w)))

2 Causal Contraints

YX

ZW

What if the required structural 
knowledge is not available?
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Encoding Causal Knowledge in 
Partially Understood Domains

Cluster Causal Diagrams



Partially Understood Systems
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YX S
( ) Lisinopril

( ) Sleep Quality 

( ) Stroke

X
S
Y

A causal diagram cannot be specified given the existing knowledge!

A DCB

How can we identify  in this case?P(y |do(x))

( ) Age

( ) Blood pressure

( ) Comorbidities

( ) Medication history

A
B
C
D



Cluster Causal Diagrams (C-DAGs)
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YX S
( ) Lisinopril

( ) Sleep Quality 

( ) Stroke

X
S
Y

A DCB

A cluster causal diagram  over a given partition  of  is compatible with 
a causal diagram  over  if for every :


•   if  and  such that 


•  if  and  such that 


and  contains no cycles.

GC C = {C1, …, Ck} V
G V Ci, Cj ∈ C

Ci → Cj ∃Vi ∈ Ci Vj ∈ Cj Vi → Vj

Ci ⤎⤏ Cj ∃Vi ∈ Ci Vj ∈ Cj Vi ⤎⤏ Vj

GC

{{X}, {S}, {Y}, {A, B, C, D}}

( ) Age

( ) Blood pressure

( ) Comorbidities

( ) Medication history

A
B
C
D



Partially Understood Systems
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YX S

A DCB

YX S

A DCB

YX S

A DCB

Can we infer causal effects without deciding 
on any one particular causal diagram?

Many causal diagrams are compatible with 
the current knowledge!

YX S

A DCB

Can be seen as an equivalence class of causal 
diagrams, where any relationships are allowed among 

the variables within each cluster. 

⋯



Identification of Causal Effects from C-DAGs
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Inference 
Engine

3 Data
P(x, m1, m2, m3, y)

1 Query
P(y |do(x))

Solution
yes / no

P(y |do(x)) = ∑
m123

P(m123 |x) ∑
x′ 

P(y |m123, x′ )P(x′ )

2 C-DAG

YX M1,2,3

Available 
(Observational) 

Distribution

Inferred 
(Interventional) 

Distribution 👍

Anand, T. V.*, Ribeiro, A. H.*, Tian, J. , Bareinboim, E. (2022). Causal Effect Identification in Cluster DAGs. Thirty-
Seventh AAAI Conference on Artificial Intelligence (AAAI-23)
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Causal Effect Identification
Graphical Criteria, Do-Calculus, and ID-Algorithm



Identification via Backdoor Adjustment

17
YX

Z

Z = {Z}

X = {X}
Y = {Y}

Let  be a set of treatment variables and  a set of outcome variables in the causal graph .  


If there exists a set  such that:


1. for every  and ,  blocks every path between  and  that has an arrow into , and


2. no node in  is a descendant of a variable  (all variables in  are pre-treatment)


Then,  satisfies the backdoor criterion and, then the effect of  on  is given by:


X Y G

Z
X ∈ X Y ∈ Y Z X Y X

Z X ∈ X Z

Z X Y

P(y |do(x)) = ∑
z

P (y |x, z) P (z)
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YX

Z

X = {X}
Y = {Y}

Identification via Backdoor Adjustment

Let  be a set of treatment variables and  a set of outcome variables in the causal graph .  


If there exists a set  such that:


1. for every  and ,  blocks every path between  and  that has an arrow into , and


2. no node in  is a descendant of a variable  (all variables in  are pre-treatment)


Then,  satisfies the backdoor criterion and, then the effect of  on  is given by:


X Y G

Z
X ∈ X Y ∈ Y Z X Y X

Z X ∈ X Z

Z X Y

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

Z = {Z}



Let  be a set of treatment variables and  a set of outcome variables in the causal graph .  


If there exists a set  such that:


1.  intercepts all directed paths from any vertex  to any vertex ;


2. There is no unblocked back-door path from any vertex  to vertex ; and


3. All back-door paths from any vertex  to any vertex  are blocked by .


Then,  satisfies the front-door criterion and, then the effect of  on  is given by:


X Y G

M
M X ∈ X Y ∈ Y

X ∈ X M ∈ M
M ∈ M Y ∈ Y X

M X Y

P(y |do(x)) = ∑
m

P(m |x) ∑
x′ 

P(y |m, x′ )P(x′ )

Identification via Front-Door Adjustment

19

YX M

M = {M}

X = {X}
Y = {Y}



Do-Calculus (a.k.a. Causal Calculus) 
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Theorem: Let   be any disjoint subjects of variables.


Rule 1 (Insertion/Deletion of Observations):





Rule 2 (Actions/Observations Exchange):





Rule 3 (Insertion/Deletion of Actions):


X, Y, Z, W

P(y |do(x), z, w) = P(y |do(x), w),  if (Y ⊥⊥ Z |X, W)GX

P(y |do(x), do(z), w) = P(y |do(x), z, w),  if (Y ⊥⊥ Z |X, W)GXZ

P(y |do(x), do(z), w) = P(y |do(x), w),  if (Y ⊥⊥ Z |X, W)GX,Z(W)

Graphical conditions implying invariances between  
observational ( ) and interventional ( ) distributionsℒ1 ℒ2

: graph  after removing the incoming arrows into  and the outgoing arrows from ;

: set of -nodes that are not ancestors of any -node in . 

GXZ G X Z
Z(W) Z W GX

Pearl, 1995
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 http://causalfusion.net

Lee, S., Correa, J., and Bareinboim, E. (2019). General identifiability with arbitrary surrogate experiments. In Proceedings of 
the 35th Conference on Uncertainty in Artificial Intelligence, volume 35, Tel Aviv, Israel. AUAI Press. Link

https://proceedings.mlr.press/v115/lee20b.html
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 http://causalfusion.net

Lee, S., Correa, J., and Bareinboim, E. (2019). General identifiability with arbitrary surrogate experiments. In Proceedings of 
the 35th Conference on Uncertainty in Artificial Intelligence, volume 35, Tel Aviv, Israel. AUAI Press. Link

https://proceedings.mlr.press/v115/lee20b.html
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 http://causalfusion.net

Lee, S., Correa, J., and Bareinboim, E. (2019). General identifiability with arbitrary surrogate experiments. In Proceedings of 
the 35th Conference on Uncertainty in Artificial Intelligence, volume 35, Tel Aviv, Israel. AUAI Press. Link

https://proceedings.mlr.press/v115/lee20b.html
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Purely Data-Driven Causal Inference
Causal Discovery and Identification under Markov Equivalence



Learning Causal Structures from Data

25

Can we learn a causal diagram  from observational data?𝒢

In non-parametric settings, we can’t learn the true causal diagram, 

but we can learn a graphical representation of all compatible causal diagrams, 

called Markov equivalence class!

What if no knowledge is available for constructing a C-DAG?



Markov Equivalence Class

P(x, y) = ∑
ux,uy

P(x |y)P(y)P(ux, uy)

Conditional 
(in)dependencies

P(v)

X ⊥⊥ Y

P(x, y) = ∑
ux,uy

P(y |x)P(x)P(ux, uy)

Correlation does not 
imply causation!

Markov Equivalence Class 
(class of models implying the same 
set of conditional independencies)

YX

YX

YX

YX

YX

ℳ1 =

V = {X, Y}
U = {Ux, UY}

ℱ = {fX(UX)
fY(X, UY)

P(U)

ℳN−1 =

V = {X, Y}
U = {Ux, UY, UX,Y}

ℱ = {
fX(Y, UX, UX,Y)
fY(UY, UX,Y)

P(U)

ℳN =

V = {X, Y}
U = {Ux, UY}

ℱ = {fX(UX)
fY(UY)

P(U)

⋮
Data

26



Constraint-Based Causal Discovery

27

Assumptions: the observed distribution is the marginal of a distribution  that satisfies the 
following conditions for the true causal diagram  (an ADMG): 

P
G

1) I-Map / Semi-Markov Condition:  for any disjoint subsets ,  and :

.

X Y Z
(X ⊥⊥ Y |Z)G ⇒ (X ⊥⊥ Y |Z)P

2) Faithfulness Condition:  for any disjoint subsets ,  and : 

.

X Y Z
(X ⊥⊥ Y |Z)P ⇒ (X ⊥⊥ Y |Z)G

Note: Estimation of the marginal distribution from limited data requires and additional assumption: 

3) An adequate conditional independence test is available.

Goal: Learn a graphical representation of the Markov Equivalence Class from observational data.

 is an I-Map of G P
 is semi-Markov 
relative to .

P
G

 is faithful to P G



Learning Structural Invariances

Conditional 
(in)dependencies

P(v)
X ⊥⊥ Y

X ⊥⊥ Z
Z ⊥⊥ Y
X ⊥⊥ Y |Z

Data

28

ℳ1 =

V = {X, Y, Z}
U = {Ux, UY, UZ}

ℱ =
X ← fX(UX)
Z ← fZ(X, Y, UZ)
Y ← fY(UY)

P(U)

⋮

ℳN−1 =

V = {X, Y, Z}
U = {UXZ, UYZ, UX, UY, UZ}

ℱ =
X ← fX(UXZ, UX)
Z ← fZ(Y, UXZ, UZ)
Y ← fY(UY)

P(U)

ℳN =

V = {X, Y, Z}
U = {UXZ, UYZ, UX, UY, UZ}

ℱ =
X ← fX(UXZ, UX)
Z ← fZ(UXZ, UYZ, UZ)
Y ← fY(UYZ, UY)

P(U)

P(x, y, z) = P(z |x, y)P(x |y)P(y)
= P(z |x, y)P(x)P(y)

Markov Equivalence Class 
(MEC)

Z YX

Z YX

Z YX

Z YX

⋮



Learning Structural Invariances

Conditional 
(in)dependencies

P(v)
X ⊥⊥ Y

X ⊥⊥ Z
Z ⊥⊥ Y
X ⊥⊥ Y |Z

Data

29

ℳ1 =

V = {X, Y, Z}
U = {Ux, UY, UZ}

ℱ =
X ← fX(UX)
Z ← fZ(X, Y, UZ)
Y ← fY(UY)

P(U)

⋮

ℳN−1 =

V = {X, Y, Z}
U = {UXZ, UYZ, UX, UY, UZ}

ℱ =
X ← fX(UXZ, UX)
Z ← fZ(Y, UXZ, UZ)
Y ← fY(UY)

P(U)

ℳN =

V = {X, Y, Z}
U = {UXZ, UYZ, UX, UY, UZ}

ℱ =
X ← fX(UXZ, UX)
Z ← fZ(UXZ, UYZ, UZ)
Y ← fY(UYZ, UY)

P(U)

Z YX

MEC Representation

P(x, y, z) = P(z |x, y)P(x |y)P(y)
= P(z |x, y)P(x)P(y)

Markov Equivalence Class 
(MEC)

Z YX

Z YX

Z YX

Z YX

⋮

Causal 
Discovery

E.g., PC and FCI 
algorithms



Fast Causal Inference (FCI) Algorithm

30

X W YZ

FCI Rules
(R1) − (R10)

X W YZ

Partial Ancestral Graph 
(PAG)

X W YZ

Skeleton

Conditional 
Independence Tests

X ⊥⊥ W
X ⊥⊥ Y |Z, W

True (unknown) 
causal diagram

X W YZ

Complete Graph

Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence of latent confounders and 
selection bias. Artificial Intelligence, 172(16):1873–1896. Link

 is not an ancestor of  or .Z X W
  and  are ancestors 

(and definite causes) of .
Z W

Y
      — spurious association

      — selection bias 

A B
A B

Arrowhead   non-ancestrality 
Tail       ancestrally 

    Circle      non-invariance

⟹
⟹
⟹

http://dx.doi.org/10.1016/j.artint.2008.08.001


Causal Structure Learning
Given an adequate conditional independence test, structure learning algorithms 

(e.g. PC/IC, FCI, etc) learn a representation of the Markov equivalence class:

Z YX

Underlying Causal Diagram Partial Ancestral Graph

Z YX Z YX

Z YX

X
Z

W
YA X

Z

W
YA

Z YX W

FCI
Data E.C.

YX ZWYX ZW

Z YX W

31



Identification of Causal Effects from PAGs

32

Inference 
Engine

3 Data
P(x, y, z, w)

1 Query
P(y |do(x))

Solution
yes / no

P(y |do(x)) = ∑
z

P (y |x, z) P (z)

2 PAG

YX

ZW

Available 
(Observational) 

Distribution

Inferred 
(Interventional) 

Distribution 👍

Jaber A., Ribeiro A. H., Zhang, J., Bareinboim, E. Causal Identification under Markov Equivalence - Calculus, Algorithm, and 
Completeness. In Proceedings of the 36th Annual Conference on Neural Information Processing Systems, NeurIPS 2022. (Link)

https://causalai.net/r86a.pdf
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Causal Challenges in Continual Causality



Continual Causal Discovery and Inference

34

Di

Causal 
Inference

Query:   =  ?P(y |do(x))

̂Pi+1(yi+1 |do(xi+1)) =

∑
zi+1

̂Pi+1 (yi+1 |xi+1, zi+1) ̂Pi+1 (zi+1)

Causal 
Discovery

yes / no

Di+1

Yi+1

Wi+1

Xi+1

Zi+1 Continual 
Causal 

InferenceContinual 
Causal 

Discovery

yes / no

Yi

Wi

Xi

Zi

̂Pi(yi |do(xi)) = ?

Challenges: Causal Data Fusion / Transfer Learning

Partial Observability 
Different Populations 

Different Experimental Designs 
Selection Bias
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Di

Causal 
Inference

Query:   =  ?s ≥ 0, P(yt |do(xt−s))

̂Pi+1(yi+1
t |do(xi+1

t−s )) = ?

Causal 
Discovery

yes / no / partial

Di+1

Continual 
Causal 

Inference

Continual 
Causal 

Discovery

Continual Dynamic Causal Systems 

Yi
t

Xi
t

Yi
t−1

Xi
t−1

Yi
t−2

Xi
t−2

Yi
t

Xi
t

Yi
t−1

Xi
t−1

Yi
t−2

Xi
t−2

̂Pi(yi
t |do(xi

t−1)) =

∑
xi

t−2

̂Pi (yi
t |xi

t−1, xi
t−2) ̂Pi (xi

t−2)

̂Pi(yi
t |do(xi

t)) = ̂Pi(yi
t)

Challenges: Temporal Dependence, Non-Stationarity 
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Thank You!
adele.ribeiro@uni-marburg.de

Questions?

mailto:adele.ribeiro@uni-marburg.de

