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What is Continual Learning?

Y/
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What is Continual Learning?

Continual Learning (CL) strives to capture the
principals of how humans and animals learn
adaptively and continuously about the world

How does learning provide the autonomous,
incremental, development of increasingly
complex knowledge, skills, and behaviors?

Y/
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The Promise

So if humans and animals learn continually,
why shouldn’t our machines?

At the least, continual learning may be one
pathway to more human-like intelligence

At the most, its one pathway towards strong,
general artificial intelligence

- “Intelligence is the ability to adapt to change.”
1 - Stephen Hawking
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The Practicalities

. . . (44
In the meantime, CL has direct benefits .
towards improving Al systems across research @l}e Nelli ﬁﬂrk 55111125

and real-world deployment , _ , o
Processing all of that internet data requires a specialized

e FEfficien cy an d Scalabil ity supercomputer running for months on end, an undertaking that is
enormously expensive. When asked if such a project ran into the
millions of dollars, Sam Altman, OpenAl’s chief executive, said the
costs were actually “higher;” running into the tens of millions.

e Fairness, Privacy & Security
e Robustness and Accuracy

//A AAAI-23 Continual Causality Bridge, Tutorial: Putting the Continual in Continual Causality, Keiland Cooper & Martin Mundt




The Problem

.
Despite the achievements of many Al o RS s
systems, few, if any, truly can learn e “w &
continually: et =
y ‘“‘s"%?ﬁ'#"h CRASH INVOLVING SELF-DRIVING WAYMO |

15.COM|5315 SUSPECTS ARE CONSIDERED DANGEROUS. CALL 911 IF YOU SEE THEM. £315 TUNE ||

e Narrow, fixed models, lacking
robustness

e Incomplete and growing datasets

e (Catastrophic forgetting

Thus, CL research is growing more and more
by the day to solve these problems

Tesla Totaled on 405

CULVER CITY
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Old ideas...
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Ray Solomonoff’'s notes on Ross Ashby’s talk during the Dartmouth
Summer Research Project in Atrtificial Intelligence, 1956
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Old(er) Ideas...

“There exists in the mind of man a block of wax ... harder, moister, and
having more or less of purity in one than another... the soft are good at
learning, but apt to forget; and the hard are the reverse”

— Plato, Theaetetus, ~369 BCE

Y/
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(a) blossoming field(s)

Number of Continual Learning and
related publications over time
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Adapted from Mundt et al. 2022, ICLR
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A rose by any other name...

e Continual Learning e One shot/ few shot learning

e Continuous Learning e Transfer learning

e Lifelong Learning o Domain Adaptation 2 = s

e Sequence learning e Curriculum Learning & |

e Online Learning e Meta-learning 2 - I
o  Streaming Learning o Learning to learn E I

e Never-ending-learning e Active Learning 5 ) __-_--i"iiiilll

e Knowledge Aggregation e Multi-task learning o- 2533“'25)5'"!!0

e The Stability / Plasticity dilemma e Meta-learning Year

e And more!
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A Formalism

Traditional Machine Learning Continual Learning

(D
= =8 &8 E
NG @~

Loss Minimize loss over D Minimize loss over | ]
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A formalism

Given a system that has learned N tasks, when faced with the N + 1th task, the
system uses the knowledge gained from the N tasks to help with the N + 1th
task.

Adapted from Thrun et al., 1996

//A AAAI-23 Continual Causality Bridge, Tutorial: Putting the Continual in Continual Causality, Keiland Cooper & Martin Mundt




A formalism

Assume that data arrives from (a potentially infinite) sequence,
o = €1,...,€n

where each experience e; consists of a batch of samples D*, with each sample
<:1:§c,y}'c> of input and target, respectively. A continual learner A°L is thus an
algorithm with the following signature:

ACE: (FE5, DY Moy, ta) = (FEF M)

where f&% is the model learned after training on experience e;, M; is a store
of past knowledge, and ¢; is a task label used to identify the data distribution.
The goal of the learner is thus to minimize the loss on the entire stream of data S.

Adapted from Lesort et al., 2020
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Prior learning

Adapted from Cooper et al. 2018, MWCSC

Recent learning

Y/
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The sequential learning problem

SEOUEN';MENCE IN Conng
Michaes o, " LEARNING PRogLEM
Neal 7, (ff;::*fy

Connectionist architectures fail to learn sequentially
Michael McCloskey & Neal J.Cohen (1989)

Taught networks addition & multiplication problems, as
well as a retroactive interference psychology problem

Noticed that learning new tasks disrupted the old task

Enter: catastrophic interference
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Why might NN’s be so forgetful?

Let's say we want to teach a network 3 tasks.

We train on each task sequentially, with no Task I
direct overlap of task examples

We can think of the networks weights as
occupying some possible space or landscape Task Il
of configurations to solve a given task Task |

The center of each distribution solves that
task

Neural network weight space

Y/
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Why might NN’s be so forgetful?

Task Il

Task Il

After training on task |
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Why might NN's be so forgetful?

g troini™d
during
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Task Il Task Il

Task 1l Task Il
Task |

After training on task | After training on task Il
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Why might NN's be so forgetful?

., q troivind
ng
. Weigl"tq’ace duri
Jroud
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Task Il Task Il Task Il

Task IlI Task 11l Task Il
Task | Task |

After training on task | After training on task Il After training on task Ill
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Not just neural networks

While most commonly associated with deep
learning, catastrophic interference applies to a
much broader class of algorithms

Neural networks (McCloskey & Cohen 1989)
Linear regression (Everon et al., 2022)

SVM (Ayad 2014)

Self organizing maps (Richardson & Thomas 2018)
And more...

Task |

Neuratretwork weight sp
MODEL pARMETER

Task 1l

Task Il

ace

Y/
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Overview of main|CL Strategies |

[ Structural ]

Dynamic -
[Architectures] [ Implicit ]

Leverage past samples of Alter the weight dynamics as a Change the macro or micro
previous task data function of tasks architecture of the network

Adapted from De Lange et al. 2021, TPAMI
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“Replay” approaches to alleviate forgetting

Y/
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If interleaving samples rescues forgetting...

Training order

Training
Accuracy

o

s N 100
Interleaved :
training '

100

Blocked
training

Training
Accuracy
o

Training Epoch

Tack Owne Tack Two

Adapted from Flesch et al, 2022
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...then storing samples for later may be useful

training
Saves samples of task data in memory buffer Yy memory
model 0
Replace memory buffer with new examples # B
ﬁ B
Disadvantages: i B \ u
n
e Utilize separate memory ﬁ o
e Does not respect data privacy 1 —
o experiggce’feplay
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A caveat...

“While it is an effective method in ANNSs, rehearsal is unlikely to be a
realistic model of biological learning mechanisms, as in this context the
actual old information (accurate and complete representation of all items
ever learned by the organism) is not available.”

— Robert French, 1997
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Replay IS biologically plausible
Complementary learning systems theory
(McClelland et al., 1995; Marr et al., 1971)

1. Hippocampus is a fast learning system

2. Cortex is a slow learning system

3. Hippocampus replays memories to cortex

4, Cortex generalizes memories

5. Hippocampus becomes less necessary for recall

Hi,bpaca.mpus
The “central dogma” of memory consolidation

Hayes et al., 2021 Neural Computation; Figure adapted from Klinzing et al., 2019
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A caveat... solved?

Pseudo-rehearsal is
significantly more likely to be a mechanism which could actually be
employed by organisms as it does not require access to this old
information, it just requires a way of approximating it.”

— Robert French, 1997

Y/
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Pseudo-Replay is biologically plausible

Main model |,

Generative replay:
e Don't memorize samples directly j
e Instead, memorize their exemplars !
e Replay generated samples instead |
\“[\ T
| Input Fa | Input L,/

Increasing evidence biological replay is not a simple A e e
function of experience: IR Generative replay

e Replay is weighted by novelty

e Replay samples all routes in an environment p WP

° 7. A

\ S
p N
Hpecahpes

Lesort et al., 2019; Figure adapted from van de Ven et al., 2020; Klinzing et al., 2019
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“Regularization” approaches to alleviate forgetting

Y/
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Elastic Weight Consolidation

Don't jump directly to optimizing for a new task, = Low error for task B == EWC

preserve the old weights = Low error for task A = L2
== NO penalty

Instead, penalize previously learned parameters

Step-1: Approximate the Fisher Information
Matrix F

Step-2: Apply a squared regularisation loss to
penalise any drastic shift in important weights
from the previous task

Y/

AAAI-23 Continual Causality Bridge, Tutorial: Putting the Continual in Continual Causality, Keiland Cooper & Martin Mundt




Regularization IS biologically plausible

Learning and novel sensory experience .
promote rapid dendritic spine alterations .,,, | V4

» ,
How to reconcile this with memory stability?

X
{10 um ¥ Before

While novel experience promotes spine

elimination, 100 - Adult SE
§ -0~ Adult EE
. . . . g % 75 = 90 months
A fraction of spines are maintained over long " /
durations a Ter = 71 months
E’ 70+
.u% 60— T T T .
0 5 10 15 20
Adult Time interval (months)
(4-5 months)

Figure adapted from Cichon & Gan 2015
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Regularization and replay are complementary

“Instead of viewing cellular and systems consolidation as separate entities,
we need to focus more on their interactive dynamics. ...After more than a
century of research, one thing has become abundantly clear: consolidation
is not a simple process.”

— Lisa Genzel and John Wixted, 2017
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“Structural” approaches to alleviate forgetting

Y/
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Why dynamic architectures?

“Catastrophic forgetting is a direct consequence of the overlap of distributed
representations and can be reduced by reducing this overlap.”

Robert French, “Using Semi-Distributed Representations to Overcome
Catastrophic Forgetting in Connectionist Networks”, AAAI 1993

Y/
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Why dynamic architectures?

“Catastrophic forgetting is a direct consequence of the overlap of distributed
representations and can be reduced by reducing this overlap.”

Robert French, “Using Semi-Distributed Representations to Overcome
Catastrophic Forgetting in Connectionist Networks”, AAAI 1993

"Very local representations will not exhibit catastrophic forgetting because there is little
interaction among representations. However, a look-up table lacks the all-important
ability to generalize. The moral of the story is that you can’t have it both ways.”
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The implicit perspective

 Recall the regularization perspective: identify + constrain important params
« We could assume over-parametrization + try to “sparsify” our parameters

« We create “sub-models” that are primarily responsible for a specific task

Y/
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The implicit perspective

Example: Pathways/PathNets

« Start with an over-parametrized
model

« Constrain a task to use a subset
of parameters

« Enforce a small/fixed number of
active modules/“paths”

&
8e7 steps 16e7 steps

Fernando et al, “PathNet: Evolution Channels Gradient Descent in Super Neural Networks”, arXiv:1701.08734, 2017

Y/
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The explicit perspective

Inspiration from neurogenesis?

“After two decades of research, the neurosciences have come a long way from accepting
that neural stem/progenitor cells generate new neurons in the adult mammalian
hippocampus to unraveling the functional role of adult-born neurons in cognition and
emotional control. The finding that new neurons are born and become integrated
into a mature circuitry throughout life has challenged and subsequently reshaped
our understanding of neural plasticity in the adult mammalian brain.”

(Quote: Vadodaria & Jessberger, “Functional neurogenesis in the adult hippocampus: then and now”, frontiers in neuroscience 8, 2014, see
also C. Gross, “Neurogenesis in the adult brain: death of a dogma”, Nature Reviews Neuroscience, 2000)

Y/

AAAI-23 Continual Causality Bridge, Tutorial: Putting the Continual in Continual Causality, Keiland Cooper & Martin Mundt




The explicit perspective

Various combinations with partial re-training with expansion - three questions:
1. When should we add? 2. What/how do we add? 3. When do we stop?

Progressive Nets

t-1 t

(eXel[(eXe)

)‘,',%4//"1‘

(a) Retraining w/o expansion  (b) No-retraining w/ expansion  (c) Partial retrammg w/ expansion

Yoon et al, “Lifelong Learning with Dynamically Expandable Networks”, ICLR 2018
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Evaluation is challenging

Unfortunately it's not only about catastrophic forgetting, it's also about capacity

Do
[«

[y
(%]

[$2}

o
[ o
9 q
-
e

Optimal capacity (polynomial degree)
p—
o

1 2 3 4

10 10 10 10

Number of training examples

Deep Learning, Goodfellow, Bengio, Courville, MIT Press 2016, Machine Learning Basics chapter, page 114.
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A small active learning detour

Let's take a small detour on an active learning experiment:
data from a pool is queried to be added to the dataset over time (x-axis)

Black line: incremental architecture
Blue line: fixed Resnet (large)

Red line: fixed small architecture
(start of the incremental one)

0 10000 20000 30000 40000 50000
Labeled points

Geifman & El-Yaniv, “Deep Active Learning with a Neural Architecture Search”, NeurIPS 2019

Y/
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So how do we evaluate &
what do we care about in CL?

Y/
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Reproducibility crisis?

7%

Don’t know

3

(]
No, there is no crisis

WHAT FACTORS CONTRIBUTE TO
IRREPRODUCIBLE RESEARCH?

Many top-rated factors relate to intense competition and time pressure.

® Always/often contribute ® Sometimes contribute

Selective reporting

IS THERE A

REPRODUCIBILITY
CRISIS?

A Nature survey lifts the lid on
how researchers view the ‘crisis’
rocking science and what they
think will help.

Pressure to publish

Low statistical power or poor analysis
Not replicated enough in original lab
Insufficient oversight/mentoring
Methods, code unavailable

Poor experimental design

BY MONYA BAKER

Raw data not available from original lab

Fraud

52% 38%
Yes, a significant Yes, a slight
R i Insufficient peer review

1,576
RESEARCHERS SURVEYED

“1500 scientists lift the lid on reproducibility”, Baker, Nature, issue 533, 2016
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Reproducibility in (static) ML

Top-1 accuracy (%]

NASNet-A-Large
SE- ResN oXt- 101(32 4d)
lneep!on—R sNet-v2
80 { SENet-154
SE-ResNeXt- 50(32 4d) IP thNei t IP thiet-131
se ResNel (&e esNet- 152 leXt-101(64x4d)
SE-ResNet§0_ Incgption-v3 ’::%‘32 et 192
Dens: NlZOi..enseNnm Raset-152
® Ok mso C“ -ResNet-101 VGG-19_BN

DualPathNet-68 R hasiietii0e VGG-16_BN

75 4
DenseNet-121
@ NASNe (’M bile
B-Incaption @ ResNet-34 VGG-13_BN

® MobileNet-v2 VEC-H.BN ‘

70 .RosNeI-18 VGG-16
MobileNet-v1
VGG-13
P shuffleNet VGG-11
.GoogLaNat
1M 5M 10M S0M 75M 100M  150M
SqueezeNet-v1.1
‘e SqueezeNet-v1.0

55 +

‘ AlexNet

Even in static scenarios:
« Many aspects of variation/interest!

 Fair comparisons, statistical
significance, exhaustive & factual
reporting

 (Misaligned?) research incentives

« Code, data, assets, accessibility...

0 5 10 15 20
Operations [G-FLOPs]

25

Bianco et al, “Benchmark Analysis of Representative Deep Neural Network Architectures”, IEEE Access, 2018

Y/
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Popular scenarios in continual learning

What are some of the sequences of tasks that are popular in continual learning?

» Sequence of datasets

» Sequences of classes (from known datasets)

» Sequences of games (in RL), or languages etc.

» Sequences of the same task with shifting distribution

* [Sequentially querying the instances of datasets]

Y/
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Challenge of defining a continual learning “task”

Benchmarks commonly based on popular vision datasets,
language datasets, or reinforcement tasks (such as games)

e a typologically diverse multilingual dataset for causal com-
XCOPA - Cross-lingual Choice monsense reasoning, which is the translation and reannota-

of Plausible Alternatives tion
e covers 11 languages from distinct families

a) MNIST b) CUB-200 c) CORe50 Name Details

e a dataset of millions of webpages suitable for learning lan-
WEBTEXT guage models without supervision
® 45 million links scraped from Reddit, 40 GB dataset

o a dataset constructed from Common Crawl’s web crawl cor-
pus and serves as a source of unlabeled text data
e 17 GB dataset

C4 - Colossal Clean Crawled
Corpus

LIFELONG FEWREL - Lifelong
Few-Shot Relation Classification
Dataset

e sentence-relation pairs derived from Wikipedia distributed
over 10 disjoint clusters (representing different tasks)

e single-relation questions divided into 20 disjoint clusters (i.e.
LIFELONG SIMPLE QUESTIONS & q J (

Figure 3: Example images from benchmark datasets used for the evaluation of lifelong learning resulting in 20 tasks)
Parisi et al, “Continual Lifelong Learning with Neural Networks: Biesialska et al, “Continual Learning in Natural Language Processing:
A Review”, Neural Networks 2019 A Survey”, COLING 2020
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Challenge of defining a continual learning “task”

It's challenging to agree on tasks (and maybe we don't need to agree)

Scenario Intuitive description Mapping to learn
Task-incremental Sequentially learntosolve  f: X XxC - Y
learning a number of distinct tasks
Domain-incremental Learn to solve the same f:x-Y
learning problem in different

contexts
Class-incremental Discriminate between f:x-¢exY
learning incrementally observed

classes

At test time, is
context identity known?

/\

YES NO

| |

Task incremental Must context identity
be inferred?

/\

NO YES

1 l

Domain incremental Class incremental

van de Ven et al, “Three types of incremental learning”, Nature Machine Intelligence 4, 2022

Y/
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Challenge of defining a continual learning “task”

It's challenging to agree on tasks (and maybe we don’t need to agree)

Context1(c=1) Context2 (c=2) Context 3 (c = 3) Context 4 (c=4) Context 5 (c=5)

0]/ 219

I
I
Il
Il
I
Il
Il
Il

Within-context label: y=0 y=1 y=0 y=1 y=0 =1 y=0 y=1
Global label: g=0 g=1 g=4 g=5 g=6 g=7 g=8 g=9
Input (at test time) Expected output Intuitive description
Task-incremental learning Image + context label Within-context label® Choice between two digits of same context (e.g. 0 or 1)
Domain-incremental learning Image Within-context label Is the digit odd or even?
Class-incremental learning Image Global label Choice between all ten digits

van de Ven et al, “Three types of incremental learning”, Nature Machine Intelligence 4, 2022
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There are plenty of ideas of what &
how to measure

Y/
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Per task measures

T ;
* “Base” loss: the initial (an old) task after i new experiences Qpcs = 1 Qpase,i
o ase —
> Measure retention T —1[= Qigeal
1 I
* “New” loss: the newest task only Qe = T 1 Xéanew,i
-> Measure ability to encode new tasks a2
i & Xall i
i " . . . Qall T 1
» “All" loss: average up to the present point in time — 1255 Qideal

-> Measure present overall performance

e “ldeal” loss: offline value trained at once
-> Measure achievable “baseline”

Kemker et al, “Measuring Catastrophic Forgetting in Neural Networks"”, AAAI 2018
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Forward and backward transfer

(Avg.) Forward transfer (with random baseline R Tey Tey Tes
b): influence of a learning task on future tasks; Tr, | R* q

t—1

— 1 . X
FWT;:; =a;—1.;—b; FWT; = —— ) FWT;_y; T'ry R’U R
1,9 t—1,3 7 t—1 Jj—1,3 *

j=2 Tr3 R,ij Rz'j R
(Avg.) Backward transfer: influence of a task on e e e e e e
pl’eVIOUS taSkS, negatlve — fOI’gettlng, pOS|t|Ve — more than forgetting: new metrics for Continual Learning”, 2018
retrospective improvement

t—1

1
j=1
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Memory, size and compute

AR L LU S ey Yir, Gl
CE =min(l, =——2*=—)  MS =min(l, =— Ne"“ )y S8 =1-min(1, )

Computational Efficiency Model Size Efficiency = Sample Storage Size Efficiency

Quantifies add/multiply ops  Quantifies parameter Quantifies stored amount of
(inference & updates) growth data (for rehearsal)

(Diaz-Rodriguez & Lomonaco et al, "Don't forget, there is more than forgetting: new metrics for Continual Learning”, 2018)
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How do we compare & draw conclusions with
various metrics + set-ups?

Y/
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The challenge of comparison

How do we compare & draw conclusions with various metrics + set-ups?

Strategy Method Budget GM Task-IL Domain-IL Class-IL
Baselines None - lower target 61.43 (+0.36) 18.42 (+0.33) 7.71(x0.18)
Joint - upper target 78.78 (+0.25) 46.85 (+0.51) 4978 (+0.21)
Context-specific components Separate Networks - - 76.83 (+0.25) - -
XdG - - 69.86 (+0.34) - -
Parameter regularization EWC - - 76.34 (+0.29) 21.65 (+0.55) 8.24 (+0.25)
Sl - - 74.84 (+0.39) 22.58 (+0.42) 810 (+0.24)
Functional regularization LwF - - 78.59 (+0.24) 29.45 (+0.39) 25.57 (+0.27)
Replay DGR - Yes 71.40 (x0.32) 20.52 (+0.43) 9.67 (+0.22)
BI-R - Yes 7914 (x0.21) 30.26 (+0.44) 25.81(+0.41)
ER 100 - 76.43 (+0.24) 39.00 (+0.34) 37.57 (+0.21)
A-GEM 100 - 73.30 (+0.39) 20.51(+0.59) 20.38 (+1.45)
Template-based classification Generative Classifier - Yes - - 46.83 (+0.18)
iCaRL 100 - - - 37.83 (x0.21)

van de Ven et al, “Three types of incremental learning”, Nature Machine Intelligence 4, 2022

Y/
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The challenge of comparison

How do we compare & draw conclusions with various metrics + set-ups?

Category Method Memory Compute possible | —— storage

Task-agnostic  Privacy Additional required

train test train test
Replay-based iCARL 1.00 5.63
GEM 1.29

3
&

o |w

Reg.-based LwF
EBLL
SI
EWC
MAS
mean-IMM
mode-IMM

IS
R

Bl

Param. iso.-based  PackNet
HAT

LR LR E R LN
3% 3% X X X X X XN«
By Ll bl <y

SNEMEIE

De Lange et al, “A continual learning survey: Defying forgetting in classification tasks”, TPAMI 2021

Low

High

Y/
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Continual learning desiderata

The challenge of consensus. Is it possible to postulate general desiderata?

Property Definition
Knowledge retention = The model is not prone to catastrophic forgetting.
Forward transfer The model learns a new task while reusing knowledge acquired from previous tasks.
Backward transfer The model achieves improved performance on previous tasks after learning a new task.
On-line learning The model learns from a continuous data stream.
No task boundaries The model learns without requiring neither clear task nor data boundaries.

Fixed model capacity Memory size is constant regardless of the number of tasks and the length of a data stream.

Table 1: Desiderata of continual learning.

Biesialska et al, “Continual Learning in Natural Language Processing: A Survey”, COLING 2020
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Continual learning desiderata

The challenge of consensus. Is it possible to postulate general desiderata?

e World with Knowns (K) &

Unknowns Unknowns (UU)

Recognize
as Known

—

N

Bendale & Boult, “Towards Open World Recognition”, CVPR 2015. Also see Mundt et al “A Wholistic View of Continual Learning with Deep Neural
Networks: Forgotten Lessons and the Bridge to Active and Open World Learning”, Neural Networks 160, 2023

It's unclear if there is a single set of desiderata...

Detect as
Unknown

* NU: Novel
Unknowns

Label Data -

e LU: Labeled
Unknowns ¢ K: Known

Incremental
Learning

Scale

but can we at least compare fairly?
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Can we compare fairly?

The Continual Learning EValuation Assessment
(CLEVA-) Compass

Inner compass level (star plot):
paradigm inspiration + setting (assumptions)

Inner compass level of supervision:
“Rings” indicate level of supervision.

Outer compass level:
Comprehensive set of practical measures

[ OSAKA (Caccia et al., 2020) [T] FedWelT (Yoon et al., 2021) A-GEM (Chaudhry et al., 2019)
[] VCL (Nguyen et al., 2018)  [] OCDVAE (Mundt et al., 2020b;a)

Encourages transparency, summarizes

incentives, and promotes comparability
In a Comp aCt Vlsua/ form Compass to Promote Research Transparency and Comparability”, ICLR 2022

Mundt et al, “CLEVA-Compass: A Continual Learning Evaluation Assessment
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The challenge of comparison & the way forward?

& B open world =]
o = acti\{e I
-% BOE] S e o Where do we go from here?
c'_J‘ mmm few-shot -i
= _ Bmm multi-task .
3 = comainadap !I Why are there so many possible
B Loopo- ™= continual iil assumptions and ways to measure?!
~ mmm lifelong
2 N1
£ s000- A—iiii!! Let's think about their origin!
= R |

) =====sESSSSsSEEnnlNNE

20|00 20l05 20l10 20I15 20I20
Year

Mundt et al, “CLEVA-Compass: A Continual Learning Evaluation Assessment
Compass to Promote Research Transparency and Comparability”, ICLR 2022

e m
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Evaluation & related paradigms

The differences between machine
learning paradigms with continuous
components can be nuances

Key aspects often reside in
how we evaluate

Each paradigm seems to have a
particular preference (potentially
neglecting other important factors)

Mundt et al, “CLEVA-Compass: A Continual Learning Evaluation Assessment
Compass to Promote Research Transparency and Comparability”, ICLR 2022

Chen & Liu (2018): “is a learning
paradigm where the training data
points arrive in a sequential order.
When a new data point arrives, the
existing model is quickly updated to
produce the best model so far"

Caruana (1997): “is an inductive
transfer mechanism whose principle
goal is 1o improve generalization
performance by leveraging the
domain-specific information
contained in the training signals of
related tasks. It does this by
training tasks in parallel while

etal. (2021): “is most
commonly understood as learning
10 learn. During base learning, an
inner learning algorithm solves a
task, defined by a dataset and

objective. During meta-learning, an
outer algorithm updates the inner
learning algorithm such that the
model improves an outer objective.”

Boult et al. (2019): “An effective -3 ” Wang et al. (2020): “is a type of
open world recognition system must Multi-task Few. s!wt machine learning problem
fficinty perform four ast: Learning (s:;mﬁ';_d by experience E, ‘i;:k T
tect unknowns, choose whicl and performance measure P),
poinis to label for addition to the Hiare E clonmimlonly & e
model, label the points, and update = number of examples wit
the model.” " B\ E o _ | supervised information for the
35 a g Z El target T. Methods make the learning
£fs SHE 2 H of target T feasible by combining
gl& Sy¢ys %2 5| the available information in E with
als £V E b £ some prior knowledge.”
£ A 15 2 |5
5|5 H £ g z
gl= a & 5 5
z 8 e & o
sle 3 & o)
glz g
B 2
Settles (2009): “The key hypothesis Pan & Yang (2010): “A domain D
in active learning (sometimes 3 choose data instances aximize performance consists of two components: a
called “query learning” or Active CONTINUAL Transfer | feature space X and a marginal
“optimal experimental design” in Ty [ Learning | probability distribution P(X),
the statistics literature) is that if the B st conticmons LEARNING iy & | Where X = {z1,...,2a} € .
learning algorithm is allowed 1o Given a source domain Ds and
chouse hedata fm}n whih tleans e leaming sk T, aarger dmmz;n
- 10 be “curious”, if you will - it wil A B '+ and learning task Tr, transfer
perform better with less training.” Z & | tearing aims to help improve
ale 3 8 learning of the target predictive
HE £ B | function fr() inDr using the
g1z L knowledge in Ds and Ts, where
2|E g g Ds#Dr.orTs # Tr. "
zlz [+ ;
Al H e
B i
ils g
McMahan et al. (2017): “leaves the g
training data distributed on devices, 2
Hacohen & Weinshall (2019): and learns a shared model by Pan & Yang (2010): “Given a
“deals with the question of how to aggregating locally-computed Soiurve domain Dy and &
use prior knowledge about the “Pd‘"ﬂ»h";f term ":‘z’;“f"m,{"m’ Domain | corresponding learning task Ts, a
diffculty of he training examples, approach Federated Learning. Ad . target domain Dr and a
inonde to sunpl eich min-bach 5 P ing learning task Tr,
non-uniformly and thus boost the transductive transfer learning aims
rate of learning and the accuracy. iy 1o improve the learning of the target
It is based on the intuition that it D4 dicti i
h prediction function fr() in Dr
helps the learning process when the Federated using the knowledge in Ds and Ts,
learner is presented with simple Learning where Ds # Dr and Ts = Tr.”

concepts first. "

using a shared representation.”

Y/
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Evaluation & related paradigms

Chen & Liu (2018): “is a learning
paradigm where the training data

Caruana (1997): “is an inductive

etal. (2021): “is most

commonly understood as learning

Online points arrive in a sequential order. transfer mechanism whose principle 10 learn. During base learning, an
Lea:nin When a new data point arrives, the goal is 1o improve K""(’_“I‘fﬂ’“’" inner learning algorithm solves a
SO0 | icting model is quickly updated 10 performance by leveraging the task, defined by a dataset and

domain-specific information
contained in the training signals of
related tasks. It does this by
training tasks in parallel while
using a shared representation.”

objective. During meta-learning, an
outer algorithm updates the inner
learning algorithm such that the
model improves an outer objective.”

produce the best model so far”

Wang et al. (2020): “is a type of
Multi-task Few-shot | . .chine tearning problem
learning Learning | (specified by experience E, task T

and performance measure P),
where E contains only a limited
number of examples with
supervised information for the
target T. Methods make the learning
of target T feasible by combining
the available information in E with
some prior knowledge.”

~

( Pan & Yang (2010): “A domain D
consists of two components: a
feature space X and a marginal
probability distribution P(X),
where X = {z1,...,z,} € X.
Given a source domain Ds and
learning task Ts, a target domain
Dr and learning task Tr, transfer

<] learning aims to help improve

g learning of the target predictive

5

CONTINUAL
LEARNING

2ouanbas

98e1 Jo 10

on all sequntial tasks

Pan & Yang (2010): “A domain D
consists of two components: a
Transfer | feature space X and a marginal

et probability distribution P(X),
ng to include continuously’ ‘on all sequential tasks Le ng where X = {z1,..., 2.} € X.
Given a source domain Ds and
learning task Ts, a target domain
Dr and learning task Tr, transfer
learning aims to help improve
learning of the target predictive
Sfunction f() in Dr using the
knowledge in Ds and T, where
Dy # Dr, or Ts # Tr-

choose data instances maximize performance

function fr() in Dy using the
knowledge in Dg and Ts, where
\Ds # Dr, or Ts # Tr.

an ctal. (2017): “leaves the
training data distributed on devices,
and learns a shared model by

Pan & Yang (2010): “Given a
source domain Ds and a

deals with the question of how to

use prior knowledge about the Curriculum updates. We term "m decentralized Domain corresponding learning task Ts, a

difficulty of the training examples, Learning approach Federated Learnin, Adaptation | ‘arset domain Dy anda i

in order to sample each mini-batch i corresponding learning task Tr,

non-uniformly and thus boost the transductive transfer learning aims

rate f learing andth aciacy ., Ioimprove e leaing of he et

't is based on the intuition that it - _r rediction function fr() in

helps the learning process when the Federated 5.smg the k{m» lulgej m()D s ami s,
" . H H H learner is presented with simple i =

Mundt et al, “CLEVA-Compass: A Continual Learning Evaluation Assessment SRR o ez bt

Compass to Promote Research Transparency and Comparability”, ICLR 2022

//A AAAI-23 Continual Causality Bridge, Tutorial: Putting the Continual in Continual Causality, Keiland Cooper & Martin Mundt




Evaluation & related parad

Do distinct applications warrant the
existence of numerous scenarios?

—> Yes, but make inspiration in
set-up transparent & promote
comparability!

Mundt et al, “CLEVA-Compass: A Continual Learning Evaluation Assessment
Compass to Promote Research Transparency and Comparability”, ICLR 2022

Chen & Liu (2018): “is a learning
paradigm where the training data

poinis arrive in a sequential order:
When a new data point arrives, the

existing model is quickly updated to
produce the best model so far”

Caruana (1997): “is an inductive
transfer mechanism whose principle
goal is 10 improve generalization
performance by leveraging the
domain-specific information
contained in the training signals of
related tasks. It does this by
training tasks in parallel while
using a shared representation.”

etal. (2021): “is most
commonly understood as learning
10 lean. During base learning, an
inner learning algorithm solves a
task, defined by a dataset and

objective. During meta-learning, an
‘outer algorithm updates the inner
learning algorithm such that the
model improves an outer objective.”

Boult et al. (2019): “An effective
open world recognition system must
efficiently perform four tasks:
detect unknowns, choose which
points to label for addition to the
model, label the points, and update
the model.”

Settles (2009): “The key hypothesis
in active learning (sometimes
called “query learning” or
“optimal experimental design” in
the statistics literature) is that if the
learning algorithm is allowed to

choose the data from which it learns
- 10 be “curious”, if you will - it will
perform better with less training.”

Hacohen & Weinshall (2019):
“deals with the question of how to
use prior knowledge about the
difficulty of the training examples,
in order to sample each mini-batch
non-uniformly and thus boost the
rate of learning and the accuracy.
1t is based on the intuition that it
helps the learning process when the
learner is presented with simple
concepts first. "

KON OF Perturheg
Tea) world datais pregepe

assign instances a
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‘McMahan et al. (2017): “leaves the
training data distributed on devices,
and learns a shared model by
aggregating locally-computed
updates. We term this decentralized
approach Federated Learning.”

Few-shot
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Wang et al. (2020): “is a type of
ing problem

machine learnin;

(specified by experience E, task T
and performance measure P),
where E contains only a limited
number of examples with
supervised information for the
target T. Methods make the learning
of target T feasible by combining
the available information in E with
some prior knowledge.”

Pan & Yang (2010): “A domain D

consists of two components: a
feature space X and a marginal
‘probability distribution P(X),
where X = {z1,...,2.} € X.
Given a source domain Ds and
learning task Ts, a target domain
Dr and learning task Tr, transfer
learning aims 1o help improve
learning of the target predictive
Sfunction f() in Dr using the
knowledge in Ds and Ts, where
Ds #Dr.orTs # Tr. "

Pan & Yang (2010): “Givena

source domain Ds and a
corresponding learning task Ts, a
domain Dr.

4

E:

corresponding learning task Tr,
transductive transfer learning aims
10 improve the learning of the target
prediction function fr() in Dr
using the knowledge in Ds and Ts,
where Ds # Dr and Ts = Tr.”
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Evaluation & related paradigms

But perhaps, we can also gain a more thorough understanding?

e Define & react to catastrophic forgetting & knowledge
transfer in learning causal models?

e Understanding effective ways for causal tools to help
interpret continual learning systems & distribution shifts?

e Develop next generation benchmarks beyond repurposing
sequences of existing dataset?

Continual Causality
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2023 AAAI Continual Causality Bridge Tutorial:

Thank You!

/"

Keilaooper Martin

Mundt
@W{L&. 00 ContinualAl

TECHNISCHE

unIversiTAT @2 hessian.Al
DARMSTADT

University of .
Uc California, Irvine &9 ConhnualAI

S

R Center for the Neurobiology
) of Learning and Memory

Data Science
Initiative

Y/

AAAI-23 Continual Causality Bridge, Tutorial: Putting the Continual in Continual Causality, Keiland Cooper & Martin Mundt




