Putting the *Continual* in **Continual Causality** #### **Martin Mundt** # What is Continual Learning? #### What is Continual Learning? Continual Learning (CL) strives to capture the principals of how humans and animals learn adaptively and continuously about the world How does learning provide the autonomous, incremental, development of increasingly complex knowledge, skills, and behaviors? #### The Promise So if humans and animals learn continually, why shouldn't our machines? At the least, continual learning may be one pathway to more human-like intelligence At the most, its one pathway towards strong, general artificial intelligence "Intelligence is the ability to adapt to change." #### The Practicalities In the meantime, CL has direct benefits towards improving Al systems across research and real-world deployment - Efficiency and Scalability - Fairness, Privacy & Security - Robustness and Accuracy # The New York Times Processing all of that internet data requires a <u>specialized</u> <u>supercomputer</u> running for months on end, an undertaking that is enormously expensive. When asked if such a project ran into the millions of dollars, Sam Altman, OpenAI's chief executive, said the costs were actually "higher," running into the tens of millions. #### The Problem Despite the achievements of many Al systems, few, if any, truly can learn continually: - Narrow, fixed models, lacking robustness - Incomplete and growing datasets - Catastrophic forgetting Thus, CL research is growing more and more by the day to solve these problems #### Old ideas... Ray Solomonoff's notes on Ross Ashby's talk during the Dartmouth Summer Research Project in Artificial Intelligence, 1956 #### Old(er) Ideas... "There exists in the mind of man a block of wax ... harder, moister, and having more or less of purity in one than another... the soft are good at learning, but apt to forget; and the hard are the reverse" − Plato, Theaetetus, ~369 BCE ### (a) blossoming field(s) # Number of Continual Learning and related publications over time Adapted from Mundt et al. 2022, ICLR #### A rose by any other name... - Continual Learning - Continuous Learning - Lifelong Learning - Sequence learning - Online Learning - Streaming Learning - Never-ending-learning - Knowledge Aggregation - The Stability / Plasticity dilemma - And more! - One shot / few shot learning - Transfer learning - Domain Adaptation - Curriculum Learning - Meta-learning - Learning to learn - Active Learning - Multi-task learning - Meta-learning #### **A Formalism** **Continual Learning** Traditional Machine Learning **Data** Model Loss Minimize loss over D Minimize loss over #### A formalism Given a system that has learned N tasks, when faced with the N+1th task, the system uses the knowledge gained from the N tasks to help with the N+1th task. Adapted from Thrun et al., 1996 #### A formalism Assume that data arrives from (a potentially infinite) sequence, $$S = e_1, ..., e_n$$ where each experience e_i consists of a batch of samples \mathcal{D}^i , with each sample $\langle x_k^i, y_k^i \rangle$ of input and target, respectively. A continual learner \mathcal{A}^{CL} is thus an algorithm with the following signature: $$\mathcal{A}^{CL}: \langle f_{i-1}^{CL}, \mathcal{D}^i, \mathcal{M}_{i-1}, t_i \rangle \to \langle f_i^{CL}, \mathcal{M}_i \rangle$$ where f_i^{CL} is the model learned after training on experience e_i , \mathcal{M}_i is a store of past knowledge, and t_i is a task label used to identify the data distribution. The goal of the learner is thus to minimize the loss on the entire stream of data S. Adapted from Lesort et al., 2020 # One (major) hiccup How to learn from every book? Step 1: Grab each book as a training corpus Step 2: Take an off-the-shelf word2vec model Step 3: Train the model on each book sequentially Step 4: Use the learned weights as a marker for learned semantics Step 5: Assert the semantics are meaningful... Adapted from Cooper et al. 2018, MWCSC #### The sequential learning problem Connectionist architectures fail to learn sequentially Michael McCloskey & Neal J.Cohen (1989) Taught networks addition & multiplication problems, as well as a retroactive interference psychology problem Noticed that learning new tasks disrupted the old task Enter: catastrophic interference Let's say we want to teach a network 3 tasks. We train on each task sequentially, with no direct overlap of task examples We can think of the networks weights as occupying some possible space or landscape of configurations to solve a given task The center of each distribution solves that task #### Not just neural networks While most commonly associated with deep learning, catastrophic interference applies to a much broader class of algorithms - Neural networks (McCloskey & Cohen 1989) - Linear regression (Everon et al., 2022) - SVM (Ayad 2014) - Self organizing maps (Richardson & Thomas 2018) - And more... Leverage past samples of previous task data Alter the weight dynamics as a function of tasks Change the macro or micro architecture of the network Adapted from De Lange et al. 2021, TPAMI # "Replay" approaches to alleviate forgetting # If interleaving samples rescues forgetting... Adapted from Flesch et al, 2022 ### ...then storing samples for later may be useful Saves samples of task data in memory buffer Replace memory buffer with new examples #### Disadvantages: - Utilize separate memory - Does not respect data privacy #### training Figure from Masson d'Autume et al. 2019, ArXiv #### A caveat... "While it is an effective method in ANNs, rehearsal is unlikely to be a realistic model of biological learning mechanisms, as in this context the actual old information (accurate and complete representation of all items ever learned by the organism) is not available." - Robert French, 1997 # Replay IS biologically plausible Complementary learning systems theory (McClelland et al., 1995; Marr et al., 1971) - 1. Hippocampus is a fast learning system - 2. Cortex is a slow learning system - 3. Hippocampus replays memories to cortex - 4. Cortex generalizes memories - 5. Hippocampus becomes less necessary for recall The "central dogma" of memory consolidation Hayes et al., 2021 Neural Computation; Figure adapted from Klinzing et al., 2019 #### A caveat... solved? "While it is an effective method in ANNs, rehearsal is unlikely to be a realistic model of biological learning mechanisms, as in this context the actual old information (accurate and complete representation of all items ever learned by the organism) is not available. Pseudo-rehearsal is significantly more likely to be a mechanism which could actually be employed by organisms as it does not require access to this old information, it just requires a way of approximating it." - Robert French, 1997 #### Pseudo-Replay is biologically plausible #### Generative replay: - Don't memorize samples directly - Instead, memorize their exemplars - Replay generated samples instead Increasing evidence biological replay is not a simple function of experience: - Replay is weighted by novelty - Replay samples all routes in an environment • Lesort et al., 2019; Figure adapted from van de Ven et al., 2020; Klinzing et al., 2019 # "Regularization" approaches to alleviate forgetting #### **Elastic Weight Consolidation** Don't jump directly to optimizing for a new task, preserve the old weights Instead, penalize previously learned parameters Step-1: Approximate the Fisher Information Matrix *F* Step-2: Apply a squared regularisation loss to penalise any drastic shift in important weights from the previous task $$L(\theta) = L_B(\theta) + \sum_{i} \frac{\lambda}{2} F_i (\theta_i - \theta_{A,i}^*)^2$$ ### Regularization IS biologically plausible Learning and novel sensory experience promote rapid dendritic spine alterations How to reconcile this with memory stability? While novel experience promotes spine elimination, A fraction of spines are maintained over long durations ### Regularization and replay are complementary "Instead of viewing cellular and systems consolidation as separate entities, we need to focus more on their interactive dynamics. ... After more than a century of research, one thing has become abundantly clear: consolidation is not a simple process." - Lisa Genzel and John Wixted, 2017 # "Structural" approaches to alleviate forgetting #### Why dynamic architectures? "Catastrophic forgetting is a direct consequence of the overlap of distributed representations and can be reduced by reducing this overlap." Robert French, "Using Semi-Distributed Representations to Overcome Catastrophic Forgetting in Connectionist Networks", AAAI 1993 #### Why dynamic architectures? "Catastrophic forgetting is a direct consequence of the overlap of distributed representations and can be reduced by reducing this overlap." Robert French, "Using Semi-Distributed Representations to Overcome Catastrophic Forgetting in Connectionist Networks", AAAI 1993 "Very local representations will not exhibit catastrophic forgetting because there is little interaction among representations. However, a look-up table lacks the all-important ability to generalize. The moral of the story is that you can't have it both ways." #### The implicit perspective - Recall the regularization perspective: identify + constrain important params - We could assume over-parametrization + try to "sparsify" our parameters • We create "sub-models" that are primarily responsible for a specific task ### The implicit perspective ### Example: Pathways/PathNets - Start with an over-parametrized model - Constrain a task to use a subset of parameters - Enforce a small/fixed number of active modules/"paths" Fernando et al, "PathNet: Evolution Channels Gradient Descent in Super Neural Networks", arXiv:1701.08734, 2017 ### The explicit perspective Inspiration from *neurogenesis?* "After two decades of research, the neurosciences have come a long way from accepting that neural stem/progenitor cells generate new neurons in the adult mammalian hippocampus to unraveling the functional role of adult-born neurons in cognition and emotional control. The finding that new neurons are born and become integrated into a mature circuitry throughout life has challenged and subsequently reshaped our understanding of neural plasticity in the adult mammalian brain." (Quote: Vadodaria & Jessberger, "Functional neurogenesis in the adult hippocampus: then and now", frontiers in neuroscience 8, 2014, see also C. Gross, "Neurogenesis in the adult brain: death of a dogma", Nature Reviews Neuroscience, 2000) ### The explicit perspective Various combinations with partial re-training with expansion - three questions: 1. *When* should we add? 2. What/how do we add? 3. When do we stop? Yoon et al, "Lifelong Learning with Dynamically Expandable Networks", ICLR 2018 ### **Evaluation is challenging** Unfortunately it's not only about catastrophic forgetting, it's also about *capacity* Deep Learning, Goodfellow, Bengio, Courville, MIT Press 2016, Machine Learning Basics chapter, page 114. ### A small active learning detour Let's take a small detour on an active learning experiment: data from a pool is gueried to be added to the dataset over time (x-axis) - 1. Black line: incremental architecture - Blue line: fixed Resnet (large) - 3. *Red line*: fixed small architecture (start of the incremental one) Geifman & El-Yaniv, "Deep Active Learning with a Neural Architecture Search", NeurIPS 2019 ## So how do we evaluate & what do we care about in CL? ### Reproducibility crisis? $\hbox{``1500 scientists lift the lid on reproducibility'', Baker, Nature, issue 533, 2016}\\$ ### Reproducibility in (static) ML #### Even in static scenarios: - Many aspects of variation/interest! - Fair comparisons, statistical significance, exhaustive & factual reporting - (Misaligned?) research incentives - Code, data, assets, accessibility... Bianco et al, "Benchmark Analysis of Representative Deep Neural Network Architectures", IEEE Access, 2018 ### Popular scenarios in continual learning What are some of the sequences of tasks that are popular in continual learning? - Sequence of datasets - Sequences of classes (from known datasets) - Sequences of games (in RL), or languages etc. - Sequences of the same task with shifting distribution - [Sequentially querying the instances of datasets] ## Challenge of defining a continual learning "task" Benchmarks commonly based on popular vision datasets, language datasets, or reinforcement tasks (such as games) Figure 3: Example images from benchmark datasets used for the evaluation of lifelong learning | Name | Details | | | | |---|--|--|--|--| | XCOPA - Cross-lingual Choice of Plausible Alternatives | a typologically diverse multilingual dataset for causal commonsense reasoning, which is the translation and reannotation covers 11 languages from distinct families | | | | | WEBTEXT | a dataset of millions of webpages suitable for learning language models without supervision 45 million links scraped from Reddit, 40 GB dataset | | | | | C4 - Colossal Clean Crawled
Corpus | a dataset constructed from Common Crawl's web crawl corpus and serves as a source of unlabeled text data 17 GB dataset | | | | | LIFELONG FEWREL - Lifelong
Few-Shot Relation Classification
Dataset | • sentence-relation pairs derived from Wikipedia distributed over 10 disjoint clusters (representing different tasks) | | | | | LIFELONG SIMPLE QUESTIONS | • single-relation questions divided into 20 disjoint clusters (i.e. resulting in 20 tasks) | | | | Parisi et al, "Continual Lifelong Learning with Neural Networks: A Review". Neural Networks 2019 Biesialska et al, "Continual Learning in Natural Language Processing: A Survey", COLING 2020 ### Challenge of defining a continual learning "task" It's challenging to agree on *tasks* (and maybe we don't need to agree) | Scenario | Intuitive description | Mapping to learn $f: \mathcal{X} \times \mathcal{C} \to \mathcal{Y}$ | | |--------------------------------|--|--|--| | Task-incremental
learning | Sequentially learn to solve a number of distinct tasks | | | | Domain-incremental
learning | Learn to solve the same problem in different contexts | $f: \mathcal{X} \to \mathcal{Y}$ | | | Class-incremental
learning | Discriminate between incrementally observed classes | $f: \mathcal{X} \to \mathcal{C} \times \mathcal{Y}$ | | van de Ven et al, "Three types of incremental learning", Nature Machine Intelligence 4, 2022 ### Challenge of defining a continual learning "task" It's challenging to agree on *tasks* (and maybe we don't need to agree) | | Input (at test time) | Expected output | Intuitive description | |-----------------------------|-----------------------|-----------------------------------|---| | Task-incremental learning | Image + context label | Within-context label ^a | Choice between two digits of same context (e.g. 0 or 1) | | Domain-incremental learning | Image | Within-context label | Is the digit odd or even? | | Class-incremental learning | Image | Global label | Choice between all ten digits | van de Ven et al, "Three types of incremental learning", Nature Machine Intelligence 4, 2022 ## There are plenty of ideas of what & how to measure ### Per task measures - "Base" loss: the initial (an old) task after i new experiences - -> Measure **retention** - "New" loss: the newest task only - -> Measure ability to **encode** new tasks - "All" loss: average up to the present point in time - -> Measure present **overall** performance - "Ideal" loss: offline value trained at once - -> Measure achievable "baseline" $$\Omega_{base} = \frac{1}{T-1} \sum_{i=2}^{T} \frac{\alpha_{base,i}}{\alpha_{ideal}}$$ $$\Omega_{new} = rac{1}{T-1} \sum_{i=2}^{T} lpha_{new,i}$$ $$\Omega_{all} = \frac{1}{T-1} \sum_{i=2}^{T} \frac{\alpha_{all,i}}{\alpha_{ideal}}$$ ### Forward and backward transfer (Avg.) *Forward transfer* (with random baseline b): influence of a learning task on future tasks; $$\operatorname{FWT}_{t,j} = a_{t-1,j} - \overline{b}_j$$ $\operatorname{FWT}_t = \frac{1}{t-1} \sum_{j=2}^{t-1} \operatorname{FWT}_{j-1,j}$ (Avg.) **Backward transfer**: influence of a task on previous tasks; negative = forgetting, positive = retrospective improvement $$BWT_{t,j} = a_{t,j} - a_{j,j}$$ $BWT_t = \frac{1}{t-1} \sum_{i=1}^{t-1} BWT_{t,j}$ Lopez-Paz & Ranzato, "Gradient Episodic Memory for Continual Learning", 2017. See also: Díaz-Rodríguez et al, "Don't forget, there is more than forgetting: new metrics for Continual Learning", 2018 ### Memory, size and compute $$CE = min(1, rac{\sum_{i=1}^{N} rac{Ops\uparrow\downarrow(Tr_i)\cdotarepsilon}{Ops(Tr_i)}}{N}) \qquad MS = min(1, rac{\sum_{i=1}^{N} rac{Mem(heta_1)}{Mem(heta_i)}}{N}) \qquad SSS = 1 - min(1, rac{\sum_{i=1}^{N} rac{Mem(M_i)}{Mem(D)}}{N})$$ Model Size Efficiency Sample Storage Size Efficiency Computational Efficiency Quantifies add/multiply ops (inference & updates) Quantifies parameter growth Quantifies stored amount of data (for rehearsal) (Díaz-Rodríguez & Lomonaco et al, "Don't forget, there is more than forgetting: new metrics for Continual Learning", 2018) # How do we compare & draw conclusions with various metrics + set-ups? ### The challenge of comparison How do we compare & draw *conclusions* with various metrics + set-ups? | Strategy | Method | Budget | GM | Task-IL | Domain-IL | Class-IL | |-------------------------------|-----------------------|----------|---------------|---------------|---------------|---------------| | Baselines | None – lower target | | | 61.43 (±0.36) | 18.42 (±0.33) | 7.71 (±0.18) | | | Joint - upper target | | | 78.78 (±0.25) | 46.85 (±0.51) | 49.78 (±0.21) | | Context-specific components | Separate Networks | -1 | - | 76.83 (±0.25) | . | | | | XdG | 2 | - | 69.86 (±0.34) | _ | | | Parameter regularization | EWC | <u> </u> | 6 . | 76.34 (±0.29) | 21.65 (±0.55) | 8.24 (±0.25) | | | SI | - | - | 74.84 (±0.39) | 22.58 (±0.42) | 8.10 (±0.24) | | Functional regularization | LwF | -1 | 13 - 0 | 78.59 (±0.24) | 29.45 (±0.39) | 25.57 (±0.27) | | Replay | DGR | - | Yes | 71.40 (±0.32) | 20.52 (±0.43) | 9.67 (±0.22) | | | BI-R | -1 | Yes | 79.14 (±0.21) | 30.26 (±0.44) | 25.81 (±0.41) | | | ER | 100 | - | 76.43 (±0.24) | 39.00 (±0.34) | 37.57 (±0.21) | | | A-GEM | 100 | | 73.30 (±0.39) | 20.51 (±0.59) | 20.38 (±1.45) | | Template-based classification | Generative Classifier | * | Yes | 2 | - | 46.83 (±0.18) | | | iCaRL | 100 | :#) | -1 | 150 | 37.83 (±0.21) | van de Ven et al, "Three types of incremental learning", Nature Machine Intelligence 4, 2022 ### The challenge of comparison How do we compare & draw *conclusions* with various metrics + set-ups? | Category | Method | Memory | | Compute | | Task-agnostic possible | Privacy issues | Additional required storage | |-----------------|----------|--------|------|---------|-------|------------------------|----------------|-----------------------------| | . | | train | test | train | test | | | | | Replay-based | iCARL | 1.24 | 1.00 | 5.63 | 45.61 | ✓ | ✓ | M + R | | • • | GEM | 1.07 | 1.29 | 10.66 | 3.64 | ✓ | ✓ | $\mathcal{T}\cdot M+R$ | | Regbased | LwF | 1.07 | 1.10 | 1.29 | 1.86 | ✓ | × | M | | | EBLL | 1.53 | 1.08 | 2.24 | 1.34 | ✓ | × | $M + \mathcal{T} \cdot A$ | | | SI | 1.09 | 1.05 | 1.13 | 1.61 | ✓ | × | $3 \cdot M$ | | | EWC | 1.09 | 1.05 | 1.11 | 1.88 | ✓ | × | $2 \cdot M$ | | | MAS | 1.09 | 1.05 | 1.16 | 1.88 | ✓ | × | $2 \cdot M$ | | | mean-IMM | 1.01 | 1.03 | 1.09 | 1.18 | ✓ | × | $\mathcal{T}\cdot M$ | | | mode-IMM | 1.01 | 1.03 | 1.24 | 1.00 | ✓ | × | $2\cdot \mathcal{T}\cdot M$ | | Param. isobased | PackNet | 1.00 | 1.94 | 2.66 | 2.40 | X | × | $\mathcal{T} \cdot M[bit]$ | | | HAT | 1.21 | 1.17 | 1.00 | 2.06 | × | × | $\mathcal{T} \cdot U$ | ### **Continual learning desiderata** The challenge of consensus. Is it possible to postulate general *desiderata*? | Property | Definition | | | | | |----------------------|--|--|--|--|--| | Knowledge retention | The model is not prone to catastrophic forgetting. | | | | | | Forward transfer | The model learns a new task while reusing knowledge acquired from previous tasks. | | | | | | Backward transfer | The model achieves improved performance on previous tasks after learning a new task. | | | | | | On-line learning | The model learns from a continuous data stream. | | | | | | No task boundaries | The model learns without requiring neither clear task nor data boundaries. | | | | | | Fixed model capacity | Memory size is constant regardless of the number of tasks and the length of a data stream. | | | | | Table 1: Desiderata of continual learning. ### **Continual learning desiderata** The challenge of consensus. Is it possible to postulate general *desiderata*? Bendale & Boult, "Towards Open World Recognition", CVPR 2015. Also see Mundt et al "A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten Lessons and the Bridge to Active and Open World Learning", Neural Networks 160, 2023 It's unclear if there is a single set of desiderata... but can we at least compare fairly? ### Can we compare fairly? The Continual Learning EValuation Assessment (CLEVA-) Compass ### Inner compass level (star plot): paradigm inspiration + setting (assumptions) #### Inner compass level of supervision: "Rings" indicate level of supervision. #### **Outer compass level:** Comprehensive set of practical measures Encourages transparency, summarizes incentives, and promotes comparability in a compact visual form ### The challenge of comparison & the way forward? Where do we go from here? Why are there so many possible assumptions and ways to measure?! Let's think about their *origin*! The *differences* between machine learning paradigms with continuous components can be *nuances* Key aspects often reside in how we *evaluate* Each *paradigm* seems to have a particular *preference* (potentially neglecting other important factors) Do distinct applications warrant the existence of numerous scenarios? —> Yes, but make inspiration in set-up transparent & promote comparability! Chen & Liu (2018): "is a learning Hospedales et al. (2021): "is most Caruana (1997): "is an inductive paradiem where the training data commonly understood as learning Meta Online transfer mechanism whose principle to learn. During base learning, an points arrive in a sequential order goal is to improve generalization inner learning algorithm solves a Learning When a new data point arrives, the Learning performance by leveraging the existing model is quickly updated to task, defined by a dataset and domain-specific information objective. During meta-learning, an produce the best model so far." contained in the training signals of outer algorithm updates the inner related tasks. It does this by learning algorithm such that the training tasks in parallel while model improves an outer objective." using a shared representation." Boult et al. (2019): "An effective Wang et al. (2020): "is a type of Multi-task Open World Few-shot machine learning problem open world recognition system must learning Learning efficiently perform four tasks: Learning (specified by experience E, task T detect unknowns choose which and performance measure P), where E contains only a limited points to label for addition to the model, label the points, and update number of examples with supervised information for the target T. Methods make the learning of target T feasible by combining the available information in E with some prior knowledge." Settles (2009): "The key hypothesis Pan & Yang (2010): "A domain D in active learning (sometimes choose data instances maximize performance consists of two components: a Continual called "query learning" or Active Transfer feature space X and a marginal "optimal experimental design" in probability distribution P(X), Learning Learning LEARNING on all sequential tasks where $X = \{x_1, \dots, x_n\} \in X$. the statistics literature) is that if the to include continuously learning algorithm is allowed to Given a source domain Ds and choose the data from which it learns learning task Ts. a target domain - to be "curious", if you will - it will DT and learning task TT, transfer perform better with less training," learning aims to help improve learning of the target predictive function $f_T()$ in D_T using the knowledge in Ds and Ts, where $D_S \neq D_T$, or $T_S \neq T_T$. McMahan et al. (2017): "leaves the training data distributed on devices, and learns a shared model by Hacohen & Weinshall (2019): Pan & Yang (2010): "Given a aggregating locally-computed "deals with the auestion of how to source domain Ds and a Curriculum updates. We term this decentralized use prior knowledge about the Domain corresponding learning task Ts. a approach Federated Learning." difficulty of the training examples. target domain D_T and a Learning Adaptation in order to sample each mini-batch corresponding learning task Tr. non-uniformly and thus boost the transductive transfer learning aims rate of learning and the accuracy. to improve the learning of the target It is based on the intuition that it prediction function $f_T()$ in D_T Federated helps the learning process when the using the knowledge in Ds and Ts, learner is presented with simple Learning where $D_S \neq D_T$ and $T_S = T_T$. concepts first. But perhaps, we can also gain a more *thorough understanding*? - Define & react to catastrophic forgetting & knowledge transfer in learning causal models? - Understanding effective ways for causal tools to help interpret continual learning systems & distribution shifts? - Develop next generation benchmarks beyond repurposing sequences of existing dataset? ## **Continual Causality** ## Thank You! Keiland Cooper UCI University of California, Irvine Continual Al Martin Mundt